Effects of arbuscular mycorrhizal inoculation on the growth, photosynthetic pigments and soluble sugar of Crocus sativus (saffron) in autoclaved soil

Paper Details

Research Paper 01/04/2015
Views (217) Download (3)
current_issue_feature_image
publication_file

Effects of arbuscular mycorrhizal inoculation on the growth, photosynthetic pigments and soluble sugar of Crocus sativus (saffron) in autoclaved soil

Mohammad Mohebi-Anabat, Hossein Riahi, Sima Zanganeh, Ehsan Sadeghnezhad
Int. J. Agron. Agri. Res.6( 4), 296-304, April 2015.
Certificate: IJAAR 2015 [Generate Certificate]

Abstract

The beneficial soil microorganisms as arbuscular mycorrhizal fungi (AMF) form the mutualistic relationship with plant roots and act as bio fertilizers for saffron (Crocus sativus L.). In the present study, the plant growth, AMF colonization and nutrient uptake of C. sativus evaluated in earthen pots filled with sterile soil. C. sativus seedlings with or without AMF spores of the Glomus species, were cultivated for six months in autoclaved sediment medium. The results of the first year showed a significant increase of the above and below ground growth of saffron plant. The fresh and dry weight content indicated in higher levels of inoculated group that the value of biomass was 4.05 (gr) and 0.42 (gr) than non-inoculated group, respectively. The photosynthetic pigments and soluble sugar content increased in the mycorrhiza infected as compared to the non-inoculated ones with rate of 36.69% and 43.1%, respectively. In addition, the mycorrhizal dependency (MD) of C. sativus to AMF reached a maximum of 38.18% under AMF inoculation treatment, which was significant (p < 0.05).

VIEWS 12

Alizadeh A. 2006. Irrigation. In: Kafi M , Koocheki A , Rashed M.H , Nassiri M. (Eds.), Saffron (Crocus sativus) Production and Processing. Science Publishers, Enfield, 79–90 P.

Allaway WG, Curran M, Hollington LM, Ricketts MC, Skelton NJ. 2001. Gas space and oxygen exchange in roots of Avicennia marina (Forsk.) Vierh. Var. australasica (Walp.) Moldenke ex NC Duke, the grey mangrove. Wetlands Ecologyand Management 9, 221–228.

Auge RM. 2001.  Water  relations,  drought  and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3-42.

Baslam M, Goicoechea N. 2011. Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22, 347–359.

Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I. 2014. The twins K+ and Na+ in Plants. Plant Physiology 171, 723–732.

Botella O, de Juan A, Mu˜noz MR, Moya A, López H. 2002. Descripción morfológ- ica y ciclo anual del azafrán (Crocus sativus L.). Cuadernos de Fitopatología. Revista técnica de fitopatología y entomología 71, 18–28.

Brighton CA. 1977. Cytology of Crocus sativus and its allies (Iridaceae). Plant Systematic Evolution 128, 137–157.

Bringhurst RM, Cardon ZG, Gage DJ. 2001. Galactosides in the rhizosphere: utilization by Sinorhizobiummeliloti and development of a biosensor. Proceedings of the National Academy of Sciences of the United States of America 98, 4540– 4545.

Cardoso EJBN, Freitas SS. 1992. A rizosfera. In: Cardoso EJBN, Tsai SM, Neves PCP (eds) Microbiologia do solo. Sociedade Brasileira de Ciencia do Solo, Campinas, 41–57 P.

Chio-Sang T. 1996. Effect of planting depth and existence of tunic on growth and flowering in Freesia forcing. Journal of the Korean Society for Horticultural Science 37, 577-581.

Clark R, Zeto S. 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23, 867–902.

Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A. 2010. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil undernon-sterile conditions. Applied Soil Ecology 45, 262–268.

European Saffron White Book. 2006. INTERREG IIIC. European Union.

Ganesan V, Mahadevan A. 1998. The Role of Mycorrhizae in the Improvement of Tuber Crops in Pot and Field Conditions, in: A. Prakash (ed.), Fungi in Biotechnology, CBS Publishers, New Delhi, India, 51-58.

Garcia K, Zimmermann SD. 2014. The role of mycorrhizal associations in plant potassium nutrition. Frontiers in plant science, 5.

Goussous SJ, Mohammad MJ. 2009. Comparative Effect of Two Arbuscular Mycorrhizae and N and P Fertilizers on Growth and Nutrient Uptake of Onions. International Journal of Agriculture & Biology 11, 463-467.

Haneef I, Faizan S, Perveen R, Kausar S. 2013. Role of arbuscular mycorrhizal fungi on growth and photosynthetic pigments in (Coriandrum sativum L.) grown under cadmium stress. World Journal of Agricultural Sciences 9(3), 245-250.

Javot H, Pumplin N, Harrison MJ. 2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell & Environment 30, 310–322.

Jin H, Liu R, Liu J, Huang XW. 2012. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Science China Life Sciences 55, 474–482.

Kafi M. 2006. Saffron ecophysiology. In: Kafi M, Koocheki A , Rashed M H , Nassiri, M (Eds.), Saffron (Crocus sativus) Production and Processing. Science Publishers, Enfield, 39–58.

Kianmehr H. 1981. Vesicular—arbuscular mycorrhizal spore population and infectivity of saffron (crocus sativus) in Iran. New Phytologist 88(1), 79-82.

Lone R. 2014. Effect on Certain Biochemical Parameters of Plants Having Underground Stem Propagules due to Mycorrhizal Association Ph.D thesis, Jiwaji University, Gwalior.

Mathew B. 1982. The Crocus. A Revision of the Genus Crocus (Iridaceae). London, BT Batsford Ltd, 127, 96.

Morte A, Lovisola C, Schubert A. 2000. Effect of drought stress on growth and water relations of the mycorrhizal aossication Helianthemum almeriense-Terfezia clavery. Mycorrhiza 10(3), 115-119.

Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A. 2007. Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum-Pinuspinaster model. Phytochemistry 68, 41–51.

Plassard C, Dell B. 2010. Phosphorus nutrition of mycorrhizal trees. Tree Physiology 30, 1129–1139.

Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55, 1743–1750.

Qiao G, Wen XP, Yu LE, Ji XB. 2011. The enhancement of droughtal tolerance for pigeon pea inoculated by arbuscular mycorrhizae fungi. Plant Soil Environmental 57, 541–546.

Schüssler A, Schwarzott D, Walker C. 2001. Anew fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological research 105, 1413–1421.

Shuab R, Lone R, Naidu J, Sharma V, Imtiyaz, S, Koul K. 2014. Benefits of Inoculation of Arbuscular Mycorrhizal Fungi on Growth and Development of Onion (Allium cepa) Plant. American-eurasian journal of agriculture & environmental science 14(6), 527-535.

Smith SE, Read DJ. 2010. Mycorrhizal Symbiosis, Academic Press.

Wang B, Qui YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5), 299-363.

Xie X, Weng B, Cai B, Dong Y, Yan C. 2014. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Applied Soil Ecology 75, 162-171.

Yooyongwech S, Phaukinsang N, Cha-um S, Supaibulwatana K. 2013 . Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation 69(3), 285-293.