Effects of some local plants on conventional and natural production of tomato (Solanum lycopersicum L.)
Paper Details
Effects of some local plants on conventional and natural production of tomato (Solanum lycopersicum L.)
Abstract
The study of the valorization of the plants of our environment for agricultural purposes is likely to make it possible to spend less to produce and therefore better benefit from its agricultural activity, to make production more accessible to the greatest number, to preserve health people and nature in general against chemicals. The objective of this work is to compare conventional tomato production with the one obtained from natural plants to determine whether natural production cannot practically replace conventional production obtained from chemicals in a suitable manner. In this perspective, the tomato variety Nunhems was used, liquid manure from two leguminous plants Acacia muricata and Gliricidia sepium, Tithonia diversifolia and wood ash extract. Seven treatments were made up from the nursery, therefore the unfertilized and untreated control treatment T1, the fertilized treatments T2 and T3 based on Acacia muricata manure + Tithonia diversifolia manure and wood ash extract. Treatments T4 and T5 were fertilized with Gliricidia sepium manure + Tithonia diversifolia manure and wood ash extract and treatments T6 and T7 chemically fertilized with NPK (20-10-10) and ammonium sulphate. Treatments T2, T4 and T6 were treated naturally and treatments T3, T5 and T7 chemically against diseases and pests. After 25 days in the nursery, 5 best plants from each treatment were transplanted to a plot where they were planted in a completely randomised block. Growth, production, physical, phytopathological and entomological parameters were regularly recorded. Among others, the weight of 30 fruits (g) showed a significant difference between the different treatments. The control treatment T1 was characterised by the lowest average (73.20±66.86a) in this weight, while the highest averages were found in treatments T3 (173.00±3.16c) and T5 (174.00±3.16c). The control treatment T1 was characterised by the lowest average (16.8±15.38a) in total healthy leaves while the highest averages were found in treatments T3 (40±1.22d) and T4 (40.4±2.07d). At the end of the study it was found that organic fertilization and natural treatment against diseases and pests in tomato production were better from the tested plants.
Abdourahamane IM, Nourou AKS, Aissata MI, Amadou OA, Jens AB. 2020. Effets combinés des doses croissantes de fientes de poules associées à la cendre, des placements et sarclage mécaniques et de traitements de semences sur la performance du mil au Niger. Afrique Science 17(2), 67 – 82.
Agboka K, Agbodzavu KM, Tomò M Vidal S. 2009. Effects of plant extracts and oil emulsions on the maize cob borer Mussidia nigrivenella (Lepidoptera: Pyralidae) in laboratory and field experiments. International Journal of Tropical Insect Science 29, 185-194.
AVSF. 2020. Guide de formation : L’agroécologie pour sortir des pesticides. Réduire l’utilisation et les risques des pesticides et produits vétérinaires par des pratiques alternatives viables. AVSF-AFD, 186p.
Bruce YA, Gounou S, Chabi-olaye A, Smith H, Schulthess F. 2004. The effect of neem (Azadirachta indica A. Juss) oil on oviposition, development and reproductive potentials of Sesamia calamistis Hampson (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera : pyralidae). Agricultural and Forest Entomology 6, 1-10.
Cherry R, Nuessl YG. 2010. Repellency of the biopesticide, Azadirachtin, to wireworms (Coleoptera: Elateridae). Florida Entomologist 93, 52-55.
Costa JM, Heuvelink E. 2018. The global tomato industry. In E. Heuvelink (Ed.), Tomatoes (2nd ed., pp. 1-26). Crop production science in horticulture series 27, CABI. https://doi.org/10.1079/9781780641935.0001.
Déla MA, Koffivi KG, Komina A, Arnaud A, Philippe G, Adolfe G. 2014. Evaluation of neem leaves-based preparations as insecticidal agents against the green peach aphid, Myzus persicae (Sternorrhyncha: Aphididae). African Journal of Agricultural Research 9(17), 1344-1352.
Doumbia WS, Dembele SG, Sissoko F, Samake O, Sousa F, Cicek H, Adamtey N, Fliessbach A. 2020. Evaluation de la fertilité des sols et les rendements de cotonnier, maïs et sorgho à Gliricidia sepium (Jacq.) Kunth. International Journal of Biological and Chemical Sciences 14(7), 2583-2598.
Gnago JA, Danho M, Agneroh TA, Fofana IK. 2010. Efficacité des extraits de neem (Azadirachta indica) et de papayer (Carica papaya) dans la lutte contre les insectes ravageurs du gombo (Abelmoschus esculentus) et du chou (Brassica oleracea) en Côte d’Ivoire. International Journal of Biological and Chemical Sciences 4(4), 953-966.
ISman MB, Koul O, Luczynski A. Kaminski J. 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to Azadirachtin content. Journal of Agricultural and food Chemestry 38, 1406-1411.
Kabore WB, Soulama S, Bambara D, Bembamba M, Hien E. 2020. Effet de Albizia lebbeck (L.) Benth. et Gliricidia sepium (Jacq.) Kunth ex Walp. sur les paramètres de fertilité du sol. Journal of Applied Biosciences 156, 16078 – 16086.
Kinsou E, Amoussa M, Goudjo Mensah AC, Koffi KJ, Assogba KF, Ahissou H, Latifou LL, Gandonou CB. 2021. Effet de la salinité sur la floraison, la fructification et la qualité nutritionnelle des fruits du cultivar local Akikon de tomate (Lycopersicon esculentum Mill.). International Journal of Biological and Chemical Sciences 15(2), 737-749.
Kulimushi E. 2014. Evaluation des effets d’insecticides botaniques sur les pucerons noirs du haricot (Aphis fabae) à Goma en république démocratique du Congo. Cahiers Africains des Droits de l‘Homme et de la Démocratie 1, 365-380.
Meadow R, Seljasen R, Brynildsen P. 2001. The effects of neem extracts on the turnip root fly and the cabbage moth. Practice oriented results of the use of plant extracts and pheromones in pest control. Proceedings of the IX Workshop, (eds. H. Kleeberg & C. P. W. Zebitz), 53–60.
Metspalu L, Luik A, Hiiesaar K, Kuusik A, Sibul I. 2001. On the influence of Neem preparations on some agricultural and forest pests. Practice oriented results of the use of plant extracts and pheromones in pest control. Proceedings of the IX Workshop, (eds. Kleeberg, H. & Zebitz, C. P. W.), 95–103.
Mfouapon A, Moupou M, Mefire J, Ngapgue J. 2014. Economical and environmental hazards of traditional packing for market garden produce used within the Foumbot agricultural region. VertigO 14(3), 1-9.
Mohiddin FA, Khan MR, Khan SM, Bhat BH. 2010. Why Trichoderma is considered super hero (super fungus) against the evil parasites? Plant. Patholology Journal 9, 92–102.
Nfor ON, Yengong CS, Tenkam MRF. 2021. Evaluation of malaria preventive measures among adult patients attending the Bamendjou and Foumbot district hospitals of the West Region of Cameroon. Malaria Journal 20(60), 1-10. https://doi.org/10.1186/s12936-021-03592-7.
Ngoy N, Ngoyi NA, Bila MH, Ntebua MMC, Pangu WPJ. 2020. Évaluation de la productivité de la tomate (Lycopersicum esculentum Mill) sous amendements organique et minéral dans la ville de Kabinda, Province de Lomami, République Démocratique du Congo. Afrique science 16(6), 161 – 168.
Nilusmas S. 2020. Gestion durable des nématodes à galles en culture maraîchère par la modélisation et l’optimisation du déploiement de variétés résistantes. Thèse de Doctorat Microbiologie et Parasitologie. Université Côte d‘Azur, 2020. Français. FfNNT: 2020COAZ4086ff. Fftel-03185191, 220p.
PAMTAC-B. 2018. Guide pratique du maraicher agroécologique de Brazaville. Essor. Agridev. 40p.
Sanja B, Marko P, Esther HE, Manon M, Željana G, Ernst W, Aneesh C. 2021. Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections. Scientific Reports. 11(23109), 6708-6724. https://doi.org/10.1038/s41598-021-02302-2.
Siene LAB, Doumbouya M, Traore MS, Conde N’guettia TVF, Kone MM. 2020. Effet de quatre types de fertilisants sur la croissance et la productivité de deux génotypes de maïs (Zea mays L.) en cas d’un semis tardif à Korhogo au Centre-Nord de la Côte d’Ivoire. International Journal of Biological and Chemical Sciences 14(1), 55-68.
Swart SES, Yapo NDBC, Koffi M, Beugre A, Koutoua YJ, Kouadio TH, Kouakou T. 2019. Mise au point de plants greffes de tomates résistants aux contraintes biotiques par greffage sur Solanum torvum. Agronomie Africaine 8, 1-11.
Tounou AK, Sokame BM, AkpaVI S, Ganyo KK, Ketoh KG, Gumedzoe Y, Mawuena D. 2012. Effets des extraits végétaux sur la dynamique de populations des insectes ravageurs de niebe, Vigna unguiculata walp, dans LE Sud DU Togo. Journal de la Recherche Scientifique de l’Université de Lomé 14(1), 25-34.
Ukeh J, Chiejina N. 2012. Preliminary investigations of the cause of post harvest fungal rot of tomato. IOSR Journal of Pharmacy and Biological Sciences 4, 36–39.
Vasquez H. 2017. Stimuler les défenses des plantes contre Botrytis cinerea par des rayonnements UV-C. Sciences agricoles. Thèse de Physiologie Végétale pour obtenir le grade de Docteur de l’Université d’Avignon et des Pays de Vaucluse, 144p.
Verkerk RHJ, Wright DJ. 1993. Biological activity of Neem seed kernel extracts and synthetic azadirachtin against larvae of Plutella xylostella L. Pesticide Science 37, 83-91.
Verónica IH, Ana KC, Javier P, Marina G, Oscar A, Sergio H, Mariana S. 2019. The Protective E ect of Trichoderma asperellum on Tomato Plants against Fusarium oxysporum and Botrytis cinerea Diseases Involves Inhibition of Reactive Oxygen Species Production. Int. International Journal of Molecular Sciences 20, 1-13. DOI: 10.3390/ijms20082007.
Wang Z, Hong Y, Li Y, Shi H, Yao J, Liu X, Wang F, Huang S, Zhu G, Zhu JK. 2021. Natural variations in SlSOS1contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnol Journal 19(1), 20–22. DOI: 10.1111/pbi.13443.
Yalaga RR, Mohammad WA, Ranjan KS, Ratnum KW, Narendra T, Vellanki RK. 2021. Salicylic acid modulates ACS, NHX1, sos1 and HKT1;2 expression to regulate ethylene overproduction and Na+ ions toxicity that leads to improved physiological status and enhanced salinity stress tolerance in tomato plants cv. Pusa Ruby. Plant Signaling & Behavior 16(1)1, e1950888. https://doi.org/10.1080/15592324.2021.1950888.
Yarou BB, Silvie P, Assogba KF, Mensah A, Taofic A, Verheggen F, Frédéric F. 2017. Plantes pesticides et protection des cultures maraichères en Afrique de l‘Ouest (synthèse bibliographique). Biotechnology, Agronomy, Society and Environment 21(4), 288-304. https://doi.org/10.25518/1780-4507.16175.
Simo Claude, Tene Eric Romuald, Tchiaze Ifoue Alice Virginie, Bekele James Wheastone, Nyabeu Ngnikeu Pascaline Laure, Nchoutnji Ibrahim Janvier (2024), Effects of some local plants on conventional and natural production of tomato (Solanum lycopersicum L.); IJB, V25, N5, November, P300-313
https://innspub.net/effects-of-some-local-plants-on-conventional-and-natural-production-of-tomato-solanum-lycopersicum-l/
Copyright © 2024
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0