Efficacy of a Bt-based biopesticide formulation of the Kurstaki HD1 variety against Spodoptera frugiperda larvae

Paper Details

Research Paper 25/11/2022
Views (409) Download (34)

Efficacy of a Bt-based biopesticide formulation of the Kurstaki HD1 variety against Spodoptera frugiperda larvae

Yapo Atsé Alain, Achi Stanislas Maurice Akpo, Koffi Eric Kwadjo, Yapo Assi Vincent De Paul, Yapo Ossey Bernard, Tyagi Rajeswar
J. Bio. Env. Sci.21( 5), 258-267, November 2022.
Certificate: JBES 2022 [Generate Certificate]


Maize cultivation is subject to many constraints that cause yield reduction. Spodoptera frugiperda is one of the insect pests of this crop in Côte d’Ivoire. In recent years, microbial insecticides have become a viable alternative to control the armyworm and are considered a safe tool in integrated pest management. Various Bt-based biopesticide formulations were tested on the armyworm larvae to identify the most effective ones. A rearing of S. frugiperda was carried out in the entomology laboratory of University Nangui Abrogoua. Thus, larvae from L1 to L6 stages were tested. Successive decimal dilutions of bacterial suspension of Btk HD1 were made, and five different doses of each biopesticide and a control were used. All bioinsecticides tested had an effect on the mortality of the larvae. However, the biopesticide formulation M10 had a much greater effect on the mortality for the most concentrated dose (1011 spores/mL) with a mortality rate of 92.1% followed by the M5 formulation with a mortality rate of 76.9% at a dose of 8.6×1010 spores/mL. For the M15 formulation, only the first dose D1 at 4.6×1011 spores/mL killed 50% of the stage 2 larvae, whereas the M0 formulae at the most concentrated dose of 1.3×1011 spores/mL, produced a mortality rate of 26.7%. The M10 formulae can be used in integrated pest management scheme against S. frugiperda.


Aranda E, Sanchez J, Peferoen M, Güereca L, Bravo A. 1996. Interactions of Bacillus thuringiensis Crystal Proteins with the Midgut Epithelial Cells ofSpodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology 68(3), 203-212.

Barrière Y. 2000. Le mais, fourrage. Origine, Evolution, Ressources génétiques et méthode de selection, Fourrages. 162, 107-119.

Bengochea P, Sánchez-Ramos I, Saelices R, Amor F, Estal P, Viñuela E, Adan AA, López J, Budia F, Medina P. 2014. Is emamectin benzoate effective against the different stages of Spodoptera exigua (Hübner) (Lepidoptera, Noctuidae). Irish Journal of Agricultural and Food Ressearch 53, 37-49.

Bezerra Da Silva C, Parra JR. 2013. New method for rearing Spodoptera frugiperda in laboratory shows that larval cannibalism is not obligatory. Revista Brasileira de Entomologia 57, 347-349.

Black K, Snyman S. 2021. biomass yield and insecticidal activity of a local Bacillus thuringiensis isolate in six fermentation media.

Bohorova N, Maciel AM, Brito RM, Aguilart L, Ibarra JE, Hoisinggton D. 1996. selection and characterization of mexican strains of Bacillus thuringiensis active against four major lepidopteran maize pests. entomophac 41, 153-165.

Bravo A, Gill SS, Soberón M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4), 423-435.

Bueno RCO, Carneiro TR, Pratissoli D, Fernandes OA, Vieira SS. 2010. Parasitism capacity of Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) eggs. Brazilian Archives of Biology and Technology 53(1), 133-139.

Buntin M, Escarce J, Kapur K, Yegian J, Marquis M. 2003. Trends and variability in individual insurance products in California. Health Affairs (Project Hope), Suppl Web, W3-449.

Chapman JW, Williams T, Escribano A, Caballero P, Cave RD, Goulson D. 1999. Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecological Entomology 24(3), 268-275.

Chirag D, Zala M, Verma H, Sisodiya DB, Thumar R, Patel M, Patel J, Borad P. 2020. Evaluation of Bio-pesticides against Fall Armyworm, Spodoptera frugiperda (J. E. Smith) in Maize. International Journal of Current Microbiology and Applied Sciences 9, 1150-1160.

Clark PL, Molina-Ochoa J, Martinelli S, Skoda SR, Isenhour DJ, Lee DJ, Krumm JT, Foster JE. 2007. Population Variation of the Fall Armyworm, Spodoptera frugiperda, in the Western Hemisphere. Journal of Insect Science 7(5), 1-10.

Countrystat. 2013.countrystat.www.countrystat.org /civ/cont/pxwebquerylma/107spd080/fr(2013).

FAO. 2017. Gestion durable de la chenille legionnaire d’automneen Afrique. 46.

Gadji AAG, Yapo OB, Abo K, Meite L, Gnagne AEY, Brar SK, Tyagi RD. 2016. Utilisation du broyat de péricarpes des cabosses de cacao comme milieu de culture alternatif pour la production de Bacillus thuringiensis var. kurstaki HD-1. International Journal of Biological and Chemical Sciences 10(2), 632.

Gene F. 2018. Invasion du légionnaire d’automne. ECHO Community. EDN Issue 139.

Glare T, O’Callaghan M. 2000. Bacillus thuringiensis: biology, ecology and safety. John Wiley & Sons, Ltd. 350p.

Kakimoto T, Fujisaki K, Miyatake T. 2009. Egg Laying Preference, Larval Dispersion, and Cannibalism in Helicoverpa armigera (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 96, 793-798.

Kumar P, Kumari K, Sharma S, Singh S. 2021. Efficacy of bio-pesticides against fall armyworm, Spodoptera frugiperda under laboratory condition. Journal of Entomolgy and Zoology Studies 9(2), 1282-1284.

Lambert B, Peferoen M. 1992. Insecticidal Promise of Bacillus thuringiensis: Facts and mysteries about a successful biopesticide. BioScience 42(2), 112-122.

Machado E, Junior G, Führ FM, Zago S, Marques L, Santos A, Nowatzki T, Dahmer M, Omoto C, Bernardi O. 2020. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Scientific Reports 10.

Monnerat R, Martins E, Queiroz P, Ordúz S, Jaramillo G, Benintende G, Cozzi J, Real MD, Martinez-Ramirez A, Rausell C, Cerón J, Ibarra JE, Del Rincon-Castro MC, Espinoza AM, Meza-Basso L, Cabrera L, Sánchez J, Soberon M, Bravo A. 2006. Genetic Variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) Populations from Latin America Is Associated with Variations in Susceptibility to Bacillus thuringiensis Cry Toxins. Applied and Environmental Microbiology 72(11), 7029-7035.

Moscardi F. 1999. Assessment of the application of baculoviruses for control of lepidoptera. Annual Review of Entomology 44(1), 257-289.

Nagoshi RN, Adamczyk JJ, Meagher RL, Gore J, Jackson R. 2007. Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. Journal of Economic Entomology 100(5), 1569-1576.

Obeta N, Okafor JAN. 1984. Medium for the production of primary powder of Bacillus thuringiensis subsp. Isaelensis. Applied and Environmental Microbiology 47(4), 863-867.

Polanczyk RA, Alves SB. 2005. Biological parameters of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) assayed with Bacillus thuringiensis berliner. Scientia Agricola, 62.

Polanczyk RA, Silva RFP, Fiuza LM. 2000. Effectiveness of Bacillus thuringiensis strains against Spodoptera frugiperda (lepidoptera: noctuidae). Brazilian Journal of Microbiology 31(3), 164-166.

Rabelo MM, Matos JML, Orozco-Restrepo SM, Paula-Moraes SV, Pereira EJG. 2020. Like Parents, Like Offspring. Susceptibility to Bt Toxins, Development on Dual-Gene Bt Cotton, and Parental Effect of Cry1Ac on a Nontarget Lepidopteran Pest. Journal of Economic Entomology 113(3), 1234-1242.

Rowe GE. 1990. Central metabolism of Bacillus thuringiensis during growth and sporulation. University of Western Ontario, Canada.

Sigsgaard L, Greenstone MH, Duffield S. 2002. Egg cannibalism in Helicoverpa armigera on sorghum and pigeonpea. BioControl 47.

Steinkraus DC, Young SY. 1999. Bacillus thuringiensis for Use against Armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae), on Wheat. The Florida Entomologist 82(2), 209.

Valicente FH, da Costa EF. 1995. Controle da lagarta do cartucho Spodoptera frugiperda (J. E. Smith) com Baculovirus spodoptera, aplicado via água de irrigação. Ann. Soc. Entomol. Do Brasil 24, 61-67.