Enhancement of commercial detergent’s wash performance by addition of enzymes of Bacillus subtilis FH1

Paper Details

Research Paper 01/02/2020
Views (864)
current_issue_feature_image
publication_file

Enhancement of commercial detergent’s wash performance by addition of enzymes of Bacillus subtilis FH1

Muhammad Aamir Khan, Muhammad Imran, Abdul Hameed, Fariha Hasan
Int. J. Biosci. 16(2), 7-11, February 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

Currently enzymatic detergents emerged as better option due to their cleaning and stain removal effectiveness in comparison to the synthetic surfactants. An extracellular alkaline protease produced by Bacillus subtilis strain FH1 was studied for its potential application as detergent additive. Enzyme was tested for its compatibility and stability by incubating it with several detergents like Surf Excel, Ariel, Express, Bonus and Brite and residual activity was checked by standard enzyme assay, it showed 92, 85, 100, 75 and 126% residual activity respectively. Its wash performance was checked by adding in these detergents while washing manually soiled cotton cloth pieces and showed excellent wash performance in combination with detergents at lower temperature. Due to stability and good wash performance the enzyme can be used as detergent additive.

Beg QK, Gupta R. 2003. Purification and Characterization of an Oxidation-stable, Thiol-dependent Serine Alkaline Protease from Bacillus mojavensis. Enzyme and Microbial Technology 32(2), 294-304. https://doi.org/10.1016/S0141-0229(02)00293-4

Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59(1), 15-32. https://doi.org/10.1007/s00253-002-0975-y

Gupta R, Gupta K, Saxena R, Khan S. 1999. Bleach-stable, alkaline protease from Bacillus sp. Biotechnology Letters 21(2), 135-138. https://doi.org/10.1023/A:1005478117918

Jurado E, Bravo V, Luzon G, Fernandez-Serrano M, Garcia-Roman M, AltmajerVaz D, Vicaria JM. 2007. Hard-surface cleaning using lipases: enzyme–surfactant interactions and washing tests. Journal of Surfactants and Detergents 10(1), 61-70. https://doi.org/10.1007/s11743-006-1009-z

Kembhavi AA, Kulkarni A, Pant A. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Applied Biochemistry and Biotechnology 38(1-2), 83-92. https://doi.org/10.1007/BF02916414

Kirk O, Borchert TV, Fuglsang CC. 2002. Industrial Enzyme Applications. Current Opinion in Biotechnology 13(4), 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2

Kitayama M. 1992. New low-temperature alkaline protease. Japanese Patent no. JP4271781.

Kumar CG, Takagi H. 1999. Microbial alkaline proteases from a bioindustrial viewpoint. Biotechnology Advances 17(7), 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0

Lageiro MM, Moura MJ, Reis A, Costa-Ferreira MJ. 2007. Microbial Proteases Application in Leather Industry. Journal of Biotechnology 2(131), S239-S240. http://dx.doi.org/10.1016%2Fj.jbiotec.2007.07.717

Mitidieri S, Martinelli AHS, Schrank A, Vainstein MH. 2006. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. Bioresource Technology 97(10), 1217–1224. https://doi.org/10.1016/j.biortech.2005.05.022

Natt MA. 2000. Studies on the production and use of microbial enzymes in leather processing (Doctoral Dissertation). Quaid-i-Azam University, Islamabad, Pakistan.

Priest FG. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews 41, 711-753.

Rai SK, Konwarh R, Mukherjee AK. 2009. Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochemical Engineering Journal 45(3), 218-225. https://doi.org/10.1016/j.bej.2009.04.001

Tamiya E, Nakamura T. 1996. Protease active at low temperature. Patent no. JP8080190.

Related Articles

Characteristics of symbiotic relationships between plants and bacteria and the influence of stress factors on them

Konul F. Bakhshaliyeva, Navai D. İmamquliyev, Mehpara İ. Gasımova, Sevda M. Muradova, Panah Z. Muradov*, Int. J. Biosci. 28(2), 75-90, February 2026.

In the line of fire: Unmasking the institutional challenges in the bureau of fire protection

Mhelen Grace F. Libre, Nancy E. Aranjuez*, Int. J. Biosci. 28(2), 53-74, February 2026.

One health approch: Diversity of domestic larval habitats and human responsibility in mosquito proliferation in Bobo-Dioulasso (Burkina Faso)

Zouéra Laouali, Kouamé Wilfred Ulrich Kouadio, Moussa Namountougou*, Int. J. Biosci. 28(2), 38-52, February 2026.

Linkages between land use change, flooding, and water quality in the Pallikaranai Marshland, Chennai, India

Arunpandiyan Murugesan, Roshy Ann Mathews, Aarthi Mariappan, J. Ranjansri, Rajakumar Sundaram, Prashanthi Devi Marimuthu*, Int. J. Biosci. 28(2), 28-37, February 2026.

Nutritional and phytochemical characteristics of Garcinia afzelii fruit

Doumbia Fanta*, Dje Kouakou Martin, Kone Daouda, Silue Sana Etienne, Kouame Lucien Patrice , Int. J. Biosci. 28(2), 17-27, February 2026.

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.