Enhancement of commercial detergent’s wash performance by addition of enzymes of Bacillus subtilis FH1

Paper Details

Research Paper 01/02/2020
Views (844)
current_issue_feature_image
publication_file

Enhancement of commercial detergent’s wash performance by addition of enzymes of Bacillus subtilis FH1

Muhammad Aamir Khan, Muhammad Imran, Abdul Hameed, Fariha Hasan
Int. J. Biosci. 16(2), 7-11, February 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

Currently enzymatic detergents emerged as better option due to their cleaning and stain removal effectiveness in comparison to the synthetic surfactants. An extracellular alkaline protease produced by Bacillus subtilis strain FH1 was studied for its potential application as detergent additive. Enzyme was tested for its compatibility and stability by incubating it with several detergents like Surf Excel, Ariel, Express, Bonus and Brite and residual activity was checked by standard enzyme assay, it showed 92, 85, 100, 75 and 126% residual activity respectively. Its wash performance was checked by adding in these detergents while washing manually soiled cotton cloth pieces and showed excellent wash performance in combination with detergents at lower temperature. Due to stability and good wash performance the enzyme can be used as detergent additive.

Beg QK, Gupta R. 2003. Purification and Characterization of an Oxidation-stable, Thiol-dependent Serine Alkaline Protease from Bacillus mojavensis. Enzyme and Microbial Technology 32(2), 294-304. https://doi.org/10.1016/S0141-0229(02)00293-4

Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59(1), 15-32. https://doi.org/10.1007/s00253-002-0975-y

Gupta R, Gupta K, Saxena R, Khan S. 1999. Bleach-stable, alkaline protease from Bacillus sp. Biotechnology Letters 21(2), 135-138. https://doi.org/10.1023/A:1005478117918

Jurado E, Bravo V, Luzon G, Fernandez-Serrano M, Garcia-Roman M, AltmajerVaz D, Vicaria JM. 2007. Hard-surface cleaning using lipases: enzyme–surfactant interactions and washing tests. Journal of Surfactants and Detergents 10(1), 61-70. https://doi.org/10.1007/s11743-006-1009-z

Kembhavi AA, Kulkarni A, Pant A. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Applied Biochemistry and Biotechnology 38(1-2), 83-92. https://doi.org/10.1007/BF02916414

Kirk O, Borchert TV, Fuglsang CC. 2002. Industrial Enzyme Applications. Current Opinion in Biotechnology 13(4), 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2

Kitayama M. 1992. New low-temperature alkaline protease. Japanese Patent no. JP4271781.

Kumar CG, Takagi H. 1999. Microbial alkaline proteases from a bioindustrial viewpoint. Biotechnology Advances 17(7), 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0

Lageiro MM, Moura MJ, Reis A, Costa-Ferreira MJ. 2007. Microbial Proteases Application in Leather Industry. Journal of Biotechnology 2(131), S239-S240. http://dx.doi.org/10.1016%2Fj.jbiotec.2007.07.717

Mitidieri S, Martinelli AHS, Schrank A, Vainstein MH. 2006. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations. Bioresource Technology 97(10), 1217–1224. https://doi.org/10.1016/j.biortech.2005.05.022

Natt MA. 2000. Studies on the production and use of microbial enzymes in leather processing (Doctoral Dissertation). Quaid-i-Azam University, Islamabad, Pakistan.

Priest FG. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriological Reviews 41, 711-753.

Rai SK, Konwarh R, Mukherjee AK. 2009. Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochemical Engineering Journal 45(3), 218-225. https://doi.org/10.1016/j.bej.2009.04.001

Tamiya E, Nakamura T. 1996. Protease active at low temperature. Patent no. JP8080190.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.