Enhancement of phosphorus utilization and availability in the mountainous region of Man, Côte d’Ivoire

Paper Details

Research Paper 10/09/2022
Views (454) Download (33)

Enhancement of phosphorus utilization and availability in the mountainous region of Man, Côte d’Ivoire

Odon Clément Ncho, Konan-Kan Hippolyte Kouadio, Gnamba Emmanuel Franck Gouedji, Dekape Josiane Karamo, Nkiruka Celestina Odoh
Int. J. Agron. Agri. Res.21( 3), 1-8, September 2022.
Certificate: IJAAR 2022 [Generate Certificate]


The soil has a large reserve of phosphorus. However, phosphorus availability for plant nutrition is limited, and mostly in ferralitic tropical soils, determined by the geochemical distribution of elements. In the mountainous region of Man, West Côte d’Ivoire, the geology and geomorphology constitute a particular characteristic which, more or less, could significantly influence soil phosphorus distribution and availability. A study was thus setup to assess soil oxides and mineralogy, and their influence on soil phosphorous content in Man. Four different rice producing sites were selected for soil sampling; Krikouma, Dompleu, Blolé and Petit-Gbêpleu (PG). Within each site, three composite samples were taken at 0 – 20cm depth from 3 plot of 25m2, each. The results of the X-ray fluorescence analysis showed the presence of large quantities of iron and aluminium oxides in the soil. In addition, these soils were rich in SiO2. The mineralogical matrix had two dominant mineral species Berlinite and Quartz, dividing the soils into two categories. This study provides scientific base for developing strategies for a sustainable phosphorous fertilization of rice cropping soils.


Barrón V, Torrent J. 2013. Iron, manganese and aluminium oxides and oxyhydroxides. Eur. Mineral. Union Notes Mineral 14, 297-336.

Batjes NH. 2011. Global distribution of soil phosphorus retention potential. ISRIC Report 2011/06, Wageningen.

Cardoso JD, Gomes DF, Goes KCGP, Fonseca NS, Dorigo Junior OF, Hungria M, Andrade DS. 2009. Relationship between total nodulation and nodulation at the root crown of peanut, soybean and common bean plants. Soil Biology & Biochemistry 41, 1760-1763.

Castro L, Blázquez ML, González F, Muñoz JM. 2020. Bioleaching of phosphate minerals using Aspergillus niger: Recovery of copper and rare earth elements. Metals 10(978). doi:10.3390/met1007097

Freese D, van der Zee SEATM, van Riemsdijk WH. 1992. Comparison of different models for phosphate sorption as a function of the iron and aluminium oxides of soils. Journal of Soil Science 43, 729-738.

Giroux M, Bernier D, Emond C. 1996. Utilisation agronomique et environnementale judicieuse des engrais phosphatés selon les caractéristiques des sols et des engrais. Colloque sur la fertilisation intégrée des sols, CPVQ inc., p. 49-64

Hinsinger P, Ndour Y, Becquer T, Chapuis-Lardy L, Masse D. 2017. Les enjeux liés au phosphore dans les sols tropicaux. In : E. Roose Ed. Restauration de la productivité des sols tropicaux et méditerranéens : contribution à l’agroécologie, IRD Edition, pp. 329-34.

Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237, 173-195. https://doi.org/10.1007/BF01073433

Liu JF, Xia RX, Wang M, Wang P, Ran QQ, Luo Y. 2008. Effects of inoculation with arbuscular mycorrhizal fungi on AIPO4 uptake by Poncirus trifoliata”. Ying Yong Sheng Tai Xue Bao 19(10), 2155-60. Chinese. PMID: 19123349.

N’cho CO, Ama-Abina JT, Odoh NC, Yusuf AA. 2020. Successful use of biofertilizers in sub-Saharan Africa: how soil fertility level constitutes its first step. Afrique SCIENCE 17(5), 220 – 228.

Nziguheba G, van Heerwaarden J, Vanlauwe B. 2021. Quantifying the prevalence of (non)-response to fertilizers in sub-Saharan Africa using on-farm trial data. Nutr Cycl Agroecosyst 121, 257-269. https://doi.org/10.1007/s10705-021-10174-1

Obasi RA. 2015. Geochemical provenance study and classification of the Agbabu soil, Ondo State, South Western Nigeria). Journal of Multidisciplinary Engineering Science and Technology 2(12), 3420 – 3426.

Peña F, Torrent J. 1990. Predicting phosphate sorption in soils of mediterranean regions. Fertilizer Research 23, 173-179.

Pierzynski GM, Vance GF, Sims JT. 2005. Soils and environmental quality. CRC Press, 584 p.

Pulungan NA, Sartohadi J. 2018. New approach to soil formation in the transitional landscape zone: weathering and alteration of parent rocks. Journal of Environments 5(1), pp. 1-7.

Sample EC, Soper RJ, Racz GJ. 1980. Reactions of phosphate fertilizers in soils, In: Khasawneh FE, Sample EC, Kamprath EJ Eds. The Role of Phosphorus in Agriculture. ASA-CSSA-SSSA, Madison, WI, p. 263 – 310.

Sanchez P. 2019. Phosphorus. In: Sanchez P. Ed. Properties and management of soils in the tropics, 2nd Ed. Cambridge: Cambridge University Press. pp. 370 – 414. DOI:10.1017/9781316809785.016

Sattari SZ, Bouwman AF, Giller KE. Van Ittersum MK. 2012. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the National Academy of Sciences of the United States of America 109(16), 6348-6353.

Singer MJ. 2015. Basic Principles of Pedology. Reference Module in Earth Systems and Environmental Sciences, Elsevier. https://doi.org/ 10.1016 /B978-0-12-409548-9.09290-3

Smil V. 2000. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53-88.

Suda A, Makino T. 2016. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma 270, 68-75.

Taglieri P, Milham P, Holford P, Morrison RJ. 2020. A methodology to estimate net proton: phosphorus co-adsorption ratios for acidic soils. Advances in Chemical Research 2(2). DOI: 10.21926 /acr.2002005

Ulén B, Snäll S. 2007. Forms and retention of phosphorus in an illite-clay soil profile with a history of fertilisation with pig manure and mineral fertilisers. Geoderma 137, 455-465.

USDA. 2022. Soil Quality Indicators: pH. USDA Natural Resources Conservation Service, 2p, 1998. [online] Available: March 2022 https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052208.pdf (February 21, 2022)

Van Ittersum MK, van Bussel LG, Wolf J, Grassini P, van Wart J, Guilpart N. 2016. Can sub-Saharan Africa feed itself?. Proceedings of the National Academy of Sciences 113, 14964-9.

Wyszkowski M, Radziemska M. 2011. Effect of some substances on content of selected components in soils contaminated with chromium. Ecological chemistry and engineering A 18(11), 1497-1504.