Estimation of peat land fire carbon emissions using remote sensing and GIS

Paper Details

Research Paper 10/08/2022
Views (943)
current_issue_feature_image
publication_file

Estimation of peat land fire carbon emissions using remote sensing and GIS

Ichsan Ridwan, Nurlina, Widya Edma Putri
J. Biodiv. & Environ. Sci. 21(2), 36-42, August 2022.
Copyright Statement: Copyright 2022; The Author(s).
License: CC BY-NC 4.0

Abstract

Global warming occurs due to too many greenhouse gases in the atmosphere, especially carbon dioxide (CO2). One of the causes of the increasing amount of CO2 gas is forest and peatland fires. Peatlands are known to store carbon stocks not only above the ground surface but also below the ground surface which if there is a fire it will turn into carbon emissions. The forest and peatland fires in 2015 were one of the worst fire events in Indonesia (Sumatra and Kalimantan) in recent years, therefore many researchers have tried to estimate carbon emissions resulting from fires in several areas. This study estimates the number of carbon emissions (above surface and subsurface carbon emissions) from peatland fires in Banjar Regency in 2015 using remote sensing technology (Landsat 8) imagery data and Geographic Information Systems (GIS). Based on two types of vegetation, namely shrubs and agricultural land (the results of land cover classification) that occupy burned peatlands, the resulting carbon emissions above the surface of 1,718.55 tons. Meanwhile, the amount of subsurface carbon emissions (based on the category of depth and peat maturity) is 1,092.14 tons. So the total carbon emissions resulting from peatland fires in Banjar Regency in 2015 were 2,810.69 tons. Overall, our findings indicate that peat fires in Banjar district produce significantly higher carbon emissions than currently reported in emission inventories, which has consequences for the predicted impacts of peat burning on air quality.

Akbar A, Faidil S. 2014. Forest and Peat Swamp Fires: Causes of Supporting Factors and Alternative Management. Forestry Research Institute. Banjarbaru.

Agus F, Subiksa IMG. 2008. Peatlands: Potential for Agriculture and Environmental Aspects. Soil Research Institute and World Agroforestry Center (ICRAF). Bogor.

Bourgeau-Chavez LL, Grelik SL, Billmire M, Michael, Jenkins LK, Kasischke ES, Turetsky MR. 2020. Assessing Boreal Peat Fire Severity and Vulnerability of Peatlands to Early Season Wildland Fire. Frontiers in Forests and Global Change 3 (February), pp.1–13. DOI: 10.3389/ffgc.2020.00020

Banjar District Government. 2014. Banjar Regency in Figures. Central Bureau of Statistics Banjar Regency. Banjar.

Couwenberg J, Dommain R, Joosten H. 2010. Greenhouse Gas Fluxes from Tropical Peatswamps in Southeast Asia. Global Change Biology 16(6), 1715-1731.

Chemical Laboratory Staff. 1998. A Guide to Soil and Plant Chemical Analysis. Center for Soil and Agroclimate Research. Bogor.

Che Azmi NA, Apandi MN, Ahmad AS. 2021. Carbon emissions from the peat fire problem—a review. Environmental Science and Pollution Research 28(14), pp.16948–16961. DOI: 10.1007/

Dewanti R. 1999. Condition of Mangrove Forests in East Kalimantan, Sumatra, Java, Bali, and Maluku. LAPAN Magazine Remote Sensing Edition. Jakarta.

French NHF, Goovaerts P, Kasischke ES. 2004. Uncertainty in Estimating Carbon Emissions from Boreal Forest Fires. Journal of Geophysical Research Atmospheres 109, 14-8. DOI:10.1029/2003JD003635

Hooijer A, Page S, Cadadell JG, Silvius M, Kwadijk J, Wostendan H, Hayasaka J. 2014. Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environmental Pollution 195, 257-266. DOI: 10.1016/j.envpol.2014.06.031.

Jauhiainen. 2010. Current and Future CO2 Emissions from Drained Peatlands in Southeast Asia. Biogeosciences 7, 1505-1514.

Key CH, Benson NC. 2005. Landscape assessment: Ground Measure of Severity, The Composite Burn Index and Remote Sensing of Severity, The Normalized Burn Ratio in FIREMON: Fire Effects Monitoring and Inventory System. U. S. Dept. of Agricultural, Utah.

Lestari P, Muthmainnah F, Permadi DA. 2020. Characterization of carbonaceous compounds emitted from Indonesian surface and sub surface peat burning. Atmospheric Pollution Research 11(9), 1465-1472. DOI: 10.1016/j.apr.2020.06.001.

Lillesand TM, Kiefer RW. 1979. Remote Sensing and Image Interpretation. John Wiley and Sons, New York.

Luta W, Ahmed OH, Heng RKJ, Choo LKN. 2017. Water table fluctuation and carbon dioxide emission from a tropical peat soil cultivated with pineapples (Ananas comosus L. Merr) 6655, 172-178.

Nurlina, Kadir S, Kurnain A, Ilham W. 2021. Comparison of Maximum Likelihood and Support Vector Machine Classifiers For Land Use/Land Cover Mapping Using Multitemporal Imagery 12, 126-139

Nurlina, Ridwan I, Putri WE. 2018. Analisis Kebakaran Lahan Gambut Menggunakan Citra Satelit Multitemporal. In Banjarbaru: Lembaga Penelitian dan Pengabdian kepada Masyarakat, Universitas Lambung Mangkurat pp. 352-355. Available at: http://snllb.ulm.ac.id/prosiding/index.php/snllb-lit/article/viewFile/78/76.

Poulter B, Christensen NL, Halpin PN. 2006. Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. Journal of Geophysical Research Atmospheres 111(6). DOI: 10.1029/2005JD006455.

Purbowaseso B. 1995. Applied Remote Sensing. The publisher the University of Indonesia. Jakarta.

Rimal B, Rijal S, Kunwar R. 2020. Comparing Support Vector Machines and Maximum Likelihood Classifiers for Mapping of Urbanization. Journal of the Indian Society of Remote Sensing 48(1), 71-79. DOI: 10.1007/s12524-019-01056-9.

Soil Survey Staff. 1998. Keys to Soil Taxonomy. United States Department of Agriculture (USDA). National Resources Conservation Services.

Smith AMS, Crystal AK, Wade TT, Alan FT, John DM, Andrew TH, Luigi B, Michael JF, Jonathan AG, John WA, Andrew K, Lilian A, Robert FK, James RG. 2014. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment 154, 322-337, ISSN 0034-4257 https://doi.org/10.1016/ j.rse.2014.03.038.

USGS. 2013. Landsat 8. http://landsat.usgs.gov /landsat8. php (accessed February 10, 2017).

Wahyunto S, Ritung, Subagjo H. 2004. Map of Peatland Distribution, Area and Carbon Content in Kalimantan / Map of Peatland Distribution Area and Carbon Content in Kalimantan, 2000-2002. 1st Edition. Wetlands International – Indonesia Program & Wildlife Habitat Canada (WHC). Bogor.

Wilbur RB, Christensen NL. 1983. Effects of Fire on Nutrient Availability in a North Carolina Coastal-Plain Pocosin. The American Midland Naturalist 110, 54-61.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.