Evaluation of electrocoagulation-flocculation for recovery of Dunaliella salina microalgae for biodiesel production: The energetics and economics

Paper Details

Research Paper 01/08/2014
Views (618)
current_issue_feature_image
publication_file

Evaluation of electrocoagulation-flocculation for recovery of Dunaliella salina microalgae for biodiesel production: The energetics and economics

Heydar Mohammad-Ghasemnejadmaleki, MortezaAlmassi, Mohammad Amin Hejazi, SaeidMinaei
J. Biodiv. & Environ. Sci. 5(2), 362-380, August 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

The high energy input for harvesting biomass makes current commercial microalgae biodiesel production economically unfeasible. In this study, the effect of current intensity, electrode gap, application time, stirring speed and electrode material on the recovery efficiency, energy consumption, amount of electrode dissolution and operation costs was investigated in batch tests. In addition the optimization of recovery of Dunaliella salina microalgae by the electrocoagulation-flocculation (ECF) process was conducted using multifactor response surface methodology (combining categorical with numeric factors) based on the D-optimal design. The results indicated that, maximum microalgae recovery efficiency achieved up to 98.06% with, electrical energy consumption of 2.4 kWh kg-1; electrodes dissolution of 17.117 mmol L-1; electrical energy consumption costs of 0.033 $ kg-1; electrodes dissolution costs of 0.98 $ kg-1 and the total consumption cost of 1.013 $ per kg of microalgae biomass. Multiple response optimization for maximizing recovery efficiency, and minimizing energy consumption and electrodes dissolution showed 93.84% recovery efficiency with electrical energy consumption of 0.3 kWh kg-1; electrodes dissolution of 5.3 mmol L-1; electrical energy consumption costs of 0.004 $ kg-1; electrodes dissolution costs of 0.28 $ kg-1 and the total operation cost of 0.284 $ per kg of microalgae biomass at current intensity of 300 mA, the time of 20 min, the electrode gap of 1.29 cm, the stirring speed of 228 rpm and with aluminum as electrode material. Results of the prediction models were validated through laboratory scale batch experiments.

Ahmad A, Sumathi S, Hameed B. 2006. Coagulation  of  residue  oil  and  suspended  solid  in palm oil mill effluent by chitosan, alum and PAC. Chem Eng J 118, 99–105. http://dx.doi.org/10.1016/j.cej2006.02.001

Ahmed AL, Mat Yasin NH, Lim CJ. 2011. Microalgae as a sustainable energy source for biodiesel production: a review, Renew. Sustain. Energy Rev. 15, 584–593. http://dx.doi.org/10.1016/j.rser.2010.09018

Akyol A. 2012.Treatment of paint manufacturing wastewater by electrocoagulation. Desalination 285, 91-99. http://dx.doi.org/10.1016/j.desal.2011.09039

Alfafara CG, Nakano K, Nomura N, Igarashi T, Matsumura M. 2002. Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater. J Chem Technol Biotechnol 77(8), 871–876. Http://dx.doi.org/10.1002/jctb649

Azarian GH, Mesdaghinia AR, Vaezi F. 2007. Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant. Iranian J Publ Health 36, 57–64.

Bernhardt H, Clasen J. 1991. Flocculation of micro-organisms. J Water SRT-Aqua 40, 76–87.

Daneshvar N, Oladegaragoze A, Djafarzadeh N. 2006. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials 129, 116–122. Http://dx.doi.org/10.1016/j.jhazmat.2005.08.033

Design-Expert. 2010. Software, Trial Version 7.1.3 User’s Guide.

Den W, Huang C. 2006. Electrocoagulation of silica nanoparticles  in  wafer  polishing  wastewater  by  a multichannel flow reactor: A kinetic study. J Environ Eng 12, 1651–1658. http://dx.doi.org/101061/(ASCE)0733-9372

Duan J, Gregory J. 2003. Coagulation by hydrolyzing metal salts. Adv. Colloid interface science 100, 475–502. http://dx.doi.org/101016/S0001-8686(02)00067-2

Gao S, Yang J, Tian J, Ma F, Tu G, Du M. 2010. Electro-coagulation- flotation process for algae removal. J Hazard Mater 177, 336–343. http://dx.doi.org/10.1016/jjhazmat.2009.12.037

Canizares P, Martinez F, Jime´ nez C, Lobato J, Rodrigo MA. 2006. Coagulation and electrocoagulation of wastes polluted with dyes. Environ Sci Technol 40, 6418–6424. http://dx.doi.org/101021/es0608390

Canizares P, Martınez F, Jime nez C, Sa ez C, Rodrigo MA. 2009. Technical and economic comparison of conventional and electrochemical coagulation processes. J Chem Technol Biotechnol 84, 702–710. http://dx.doi.org/101002/jctb.2102

Gouveia L, Oliveira AC. 2009. Microalgae as a raw material  for  biofuels  production,  J  Ind  Microbiol Biotechnol 36, 269–74. http://dx.doi.org/10.1007/s10295-008-0495-6

Halim R, Gladman B, Danquah MK, Webley PA. 2011. Oil extraction from microalgae for biodiesel production, Bioresour Technol. 102, 178– 185. http://dx.doi.org/10.1016/j.biortech.2010.06.136

Johnson Mk, Johnson EJ, macelroy RD, Speer HL, Bruff BS. 1968. Effects of salts on the halophylic algae Dunaliella viridis. Journal of Bacteriology 95, 1461-1468.

Khan SA, Rashmi, Hussain Z, Prasad S, Banerjee UC. 2009. Prospects of biodiesel production from microalgae in India, Renew. Sustain Rev 13, 2361–2372. http://dx.doi.org/10.1016/j.rser.2009.04.005

Keera ST, Sabagh SM, Taman AR. 2011. Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst, Fuel 90, 42–47. http://dx.doi.org/10.1016/j.fuel.2010.07.046

Kim TH, Park C, Shin EB, Kim S. 2002. Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalinisation 150, 165–175. http://dx.doi.org/101016/S0011-9164(02)00941-4

Kobya M, Can OT. 2004. Operating cost analysis of electrocoagulation of textile dye wastewater, Sep. Purif. Technol 37, 117-125. http://dx.doi.org/10.1016/j.seppur.2003.09.002

Matos C T, Santos M, Nobre BP, Gouveia L. 2013. Nannochloropsis sp. Biomass recovery by Electro-Coagulation for biodiesel and pigment production. Bioresource Technology 134, 291-226. http://dx.doi.org/10.1016/j.biortech.2013.02.034

Miao X, Wu Q. 2006. Biodiesel production from heterotrophic microalgal oil, Bioresour. Technol 97, 841–846. http://dx.doi.org/10.1016/j.biortech.2005.04.008

Mohammad-Ghasemnejadmaleki H, Almassi M, Hejazi MA, Minaei S. 2014a. Harvesting of microalgae by electro-coagulation-flocculation for biodiesel production: An investigation of the effect of operational parameters and forecast model using response surface methodology. International Journal of Biosciences 4, 258-269. http://dx.doi.org/10.12692/ijb/4.7258-269

Mohammad-Ghasemnejadmaleki  H,  Almassi M, Nasirian N. 2014b. Biodiesel production from microalgae and determine properties of produced fuel using  standard  test  fuel.  International  Journal  of Biosciences 5, 47-55. http://dx.doi.org/10.12692/ijb/5.2.47-55

Mollah MY, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL. 2004. Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114,199–210. http://dx.doi.org/10.1016/j.jhazmat.2004.08.009

Mollah MY, Schennach R, Parga JR, Cocke DL. 2001. Electrocoagulation (EC) science and applications. J Hazard Mater 84, 29–41. http://dx.doi.org/101016/S0304-3894(01)00176-5

Mollah MY, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL. 2004. Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114, 199–210. http://dx.doi.org/10.1016/jjhazmat.2004.08.009

Montgomery DC. 2001. Design and Analysis of Experiments, fifth ed. John Wiley and Sons, Inc, New York, 427–500 p.

Myers RH, Montgomery DC. 2002. Response Surface Methodology: Process and Product Optimization using Designed Experiments, second ed., John Wiley & Sons, USA.

Papazi A, Makridis P, Divanach P. 2009. Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol 22, 349–355. http://dx.doi.org/101007/s10811-009-9465-2

Pahl S, Lee A, Kalaitzidis T, Ashman P, Sathe S, Lewis D. 2013. Harvesting, thickening and dewatering microalgae biomass, M.A. Borowitzka and N.R. Moheimani (eds.), Algae for Biofuels and Energy, Developments in Applied Phycology 5, Springer Science 10, 165-185. http://dx.doi.org/101007/978-94-007-5479-9

Poelman E, Depauw N, Jeurissen B. 1997. Potential of electrolytic flocculation for recovery of microalgae. Resour Conserv Recycl 19, 1–10. http://dx.doi.org/101016/S0921-3449(96)01156-1

Pons MN, Alinsafi A, Khemis M, Leclerc JP, Yaacoubi A, Ben-hammou A, Nejmeddine A. 2005. Electro-coagulation of reactive textile dyes and textile wastewater, Chem. Eng. Process 44, 461–470. http://dx.doi.org/10.1016/j.cep.2004.06.010

Salim S, Bosma R, Vermue MH, Wijffels RH. 2011. Harvesting of microalgae by bio- flocculation, J. Appl. Phycol 23, 849–855. http://dx.doi.org/10.1007/s10811-010-9591-x

Shelef G, Sukenik A, Green M. 1984. Microalgae harvesting and processing: A literature review, u.s. Department of Energy, Contract No. 0 E-AC02-83CH10093.

Uduman N, Qi Y, Danquah MK, Hoadley AFA. 2010. Marine microalgae flocculation and focused beam reflectance measurement, Chem. Eng. J. 162, 935–940. http://dx.doi.org/10.1016/j.cej.2010.06.046

Uduman N, Bourniquel V, Danquah MK, Hoadley AFA. 2011.A parametric study of electrocoagulation as a recovery process of mariane microalgae for biodiesel production, Chem. Eng. J. 174, 249-257. http://dx.doi.org/10.1016/j.cej.2011.09012

Valdivia-Lefort P. 2011. An optimal harvesting and dewatering system mechanism for microalgae. Journal of Agricultural Machinery Science, 7(2), 211-215.

Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K. 2011. Evaluation of Electro-Coagulation-Flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering 108, 2320-2329. http://dx.doiorg/10.1002/bit.23199

Vandamme D, Foubert I, Meesschaert B, Muylaert K. 2010.Flocculation of microalgae using cationic starch, J. Appl. Phycol. 22(2010), 525–530. http://dx.doi.org/10.1007/s10811-009-9488-8

Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y. 2010. Harvesting algal biomass for biofuels using ultrafiltration membranes, Bioresour Technol 101, 5297-5304. http://dx.doi.org/10.1016/j.biortech.2010.02.007

Zodi S, Potier O, Lapicque F, Leclerc JP. 2010. Treatment of the industrial wastewaters by electrocoagulation: Optimization of coupled electro-chemical and sedimentation processes. Desalination 261, 186-190. http://dx.doi.org/10.1016/j.desal.2010.04.024

Related Articles

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.