Evaluation of genotoxic and antigenotoxic activities of resveratrol in the wing spot test of Drosophila

Paper Details

Research Paper 01/08/2015
Views (240) Download (3)
current_issue_feature_image
publication_file

Evaluation of genotoxic and antigenotoxic activities of resveratrol in the wing spot test of Drosophila

Eylem Eroğlu Doğan, Elif Yeşilada
Int. J. Biosci.7( 2), 86-95, August 2015.
Certificate: IJB 2015 [Generate Certificate]

Abstract

Resveratrol (RES) is a well-known polyphenolic compound found in plants and has received much interest due to its numerous biological activities. In this study, the potential genotoxic activity of resveratrol (RES) and its antigenotoxic properties against the mutagenic agents cyclophosphamide (CP), mitomycin C (MMC) and N-methyl-N-nitrosourea (MNU) were investigated using the standard (ST) cross of the wing spot test in Drosophila melanogaster. It was shown that five different concentrations of RES (0.1, 0.2, 0.5, 0.75, 1 mM) employed had no significant effect on spots frequencies indicating a lack of genotoxic activity; while CP (0.5, 1, 2 mM), MMC (0.025, 0.05, 0.1 mM) and MNU (0.5, 1, 1.5 mM) treatments gave positive results for all types of spots, indicating a strong genotoxic activity. Τhe simultaneous administration of CP (1 mM), MMC (0.05 mM) and MNU (1 mM) with RES (0.2, 0.5, 1 mM) led to considerable alterations of the frequencies of CP, MMC and MNU-induced wing spots with the total mutant clones showing reduction between 16.25% and 55.25%. The data clearly indicate a protective role of RES against CP, MMC, MNU-induced genotoxicity.

VIEWS 4

Abraham SK. 1994. Antigenotoxicity of coffee in the Drosophila assay for somatic mutation and recombination. Mutagenesis 9(4), 383-386. http://dx.doi.org/10.1093/mutage/9.4.383

Alaraby M, Demir E, Hernández A, Marcos R. 2015. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model. Science of The Total Environment 530-531, 66-75. http://dx.doi.org/10.1016/j.scitotenv.2015.05.069

Anderson D, Bishop, JB, Garner RC, Ostroskywegman P, Selby PB. 1995. Cyclophosphamide: Review of its mutagenicity for an assessment of potential germ cell risks. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 330(1-2), 115-181. http://dx.doi.org/10.1016/0027-5107(95)00039-L

Berni A, Grossi MR, Pepe G, Filippi S, Muthukumar S, Papeschi C, Natarajan AT, Palitti F. 2012. Protective effect of ellagic acid (EA) on micronucleus formation induced by N-methyl-N ‘-nitro-N-nitrosoguanidine (MNNG) in mammalian cells, in in vitro assays and in vivo. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 746(1), 60-65. http://dx.doi.org/10.1016/j.mrgentox.2012.03.007

Chen CZ, Jiang XJ, Zhao W, Zhang ZZ. 2013. Dual role of resveratrol in modulation of genotoxicity induced by sodium arsenite via oxidative stress and apoptosis. Food and Chemical Toxicology 59, 8-17. http://dx.doi.org/10.1016/j.fct.2013.05.030

Demir E, Kocaoglu S, Cetin H, Kaya B. 2009. Antigenotoxic effects of Citrus aurentium L. fruit peel oil on mutagenicity of two alkylating agents and two metals in the Drosophila wing spot test. Environmental  and  Molecular  Mutagenesis  50(6), 483-488. http://dx.doi.org/10.1002/em.20484

Frei H, Wurgler FE. 1988. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a psitive, negative, or inconclusive result. Mutation Research/Environmental Mutagenesis and Related Subjects 203(4), 297-308. http://dx.doi.org/10.1016/0165-1161(88)90019-2

Fukuhara K, Nakanishi I, Matsuoka A, Matsumura T, Honda S, Hayashi M, Ozawa T, Miyata N, Saito S, Ikota N, Okuda H. 2008. Effect of methyl substitution on the antioxidative property and genotoxicity of resveratrol. Chemical Research in Toxicology 21(2), 282-287. http://dx.doi.org/10.1021/tx7003008

Graf U, Abraham SK, Guzman-Rincon J, Wurgler FE. 1998. Antigenotoxicity studies in Drosophila melanogaster. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 402(1-2), 203-209. http://dx.doi.org/10.1016/S0027-5107(97)00298-4

Graf U, Wurgler FE, Katz AJ, Frei H, Juon H, Hall CB, Kale PG. 1984.  Somatic  mutation  and recombination test in Drosophila melanogaster. Environmental Mutagenesis 6(2), 153-188. http://dx.doi.org/10.1002/em.2860060206

Idaomar A, El Hamss R, Bakkali F, Mezzoug N, Zhiri A, Baudoux D, Munoz-Serrano A, Liemans V, Alonso-Moraga A. 2002. Genotoxicity and antigenotoxicity of some essential oils evaluated by wing spot test of Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 513(1-2), 61-68. http://dx.doi.org/10.1016/S1383-5718(01)00287-X

Inouye T, Sasaki YF, Imanishi H, Watanebe M, Ohta T, Shirasu Y. 1988. Suppression of mitomycin-C-induced micronuclei in mouse bone-marrow cells by post-treatment with vanillin. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 202(1), 93-95. http://dx.doi.org/10.1016/0027-5107(88)90168-6

Jeibmann A, Paulus W. 2009. Drosophila melanogaster as a model organism of brain diseases. International Journal of Molecular Sciences 10(2), 407-440. http://dx.doi.org/10.3390/ijms10020407

Karan D, Parkash R, David JR. 1999. Microspatial genetic differentiation for tolerance and utilization of various alcohols and acetic acid in Drosophila  species  from  India.  Genetica,  105(3), 249-258. http://dx.doi.org/10.1023/A:1003815626258

Kastenbaum MA, Bowman K. 1970. Tables for determining the statistical significance of mutation frequencies. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 9, 527-549.

Kaya B, Creus A, Velazquez A, Yanikoglu A, Marcos R. 2002. Genotoxicity is modulated by ascorbic acid: Studies using the wing spot test in Drosophila. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 520(1-2), 93-101. http://dx.doi.org/10.1016/S1383-5718(02)00173-0

Khan MA, Chen HC, Wan XX, Tania M, Xu AH, Chen FZ, Zhang DZ. 2013. Regulatory effects of resveratrol on antioxidant enzymes: A mechanism of growth inhibition and apoptosis induction in cancer cells. Molecules and Cells 35(3), 219-225. http://dx.doi.org/10.1007/s10059-013-2259-z

Kopp P. 1998. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? European Journal of Endocrinology 138, 619-620. http://dx.doi.org/10.1530/eje.0.1380619

Langová M, Polívková Z, Šmerák P, Bártová J, Bárta I. 2005. Antimutagenic effect of resveratrol. Czech Journal of Food Science 23(5), 202-208.

Li ZD, Ma QY, Wang CA. 2006. Effect of resveratrol on pancreatic oxygen free radicals in rats with severe acute pancreatitis. World Journal of Gastroenterology 12(1), 137-140. http://dx.doi.org/10.3748/wjg.v12.i1.137

Lindsley DL, Zimm GG. 1992. The genome of Drosophila melanogaster. San Diego, CA: Academic Press, p.1133.

Medina PMB, Cabaccan JS, Asis JLB. 2015. Effect of natural and artificial sweeteners on the hemolymph glucose level (HGL) in Drosophila melanogaster. International Journal of Biosciences 7(1), 119-131. http://dx.doi.org/10.12692/ijb/7.1.119-131

Podratz JL, Staff NP, Froemel D, Wallner A, Wabnig F, Bieber AJ, Tang A, Windebank AJ. 2011. Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity. Neurobiology of Disease 43(2), 330-337. http://dx.doi.org/10.1016/j.nbd.2011.03.022

Rincon JG, Espinosa J, Graf U. 1998. Analysis of the in vivo nitrosation capacity of the larvae used in the wing somatic mutation and recombination test of Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 412(1), 69-81. http://dx.doi.org/10.1016/S1383-5718(97)00174-5

Rodriguez Arnaiz R, Soto PO, Oyarzun JCG, Graf U. 1996. Analysis of mitotic recombination induced by several mono- and bifunctional alkylating agents in the Drosophila wing spot test. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 351(2), 133-145. http://dx.doi.org/10.1016/0027-5107(95)00217-0

Sarikaya R, Yuksel M. 2008. Genotoxic assessment of oxcarbazepine and carbamazepine in drosophila wing spot test. Food and Chemical Toxicology 46(9), 3159-3162. http://dx.doi.org/10.1016/j.fct.2008.06.089

Schimenti KJ, Hanneman WH, Schimenti JC. 1997. Evidence for cyclophosphamide-induced gene conversion and mutation in mouse germ cells. Toxicology and Applied Pharmacology 147(2), 343-350. http://dx.doi.org/10.1006/taap.1997.8292

Schmitt E, Lehmann L, Metzler M, Stopper H. 2002. Hormonal and genotoxic activity of resveratrol. Toxicology Letters 136(2), 133-142. http://dx.doi.org/10.1016/S0378-4274(02)00290-4

Sontakke YA, Fulzele RR. 2009. Cytogenetic study on genotoxicity of antitumor-antibiotic Mitomycin C. Biomedical Research 20(1), 40-44.

Spano MA, Frei H, Wurgler FE, Graf U. 2001. Recombinagenic activity of four compounds in the standard and high bioactivation crosses of Drosophila melanogaster in the wing spot test. Mutagenesis 16(5), 385-394. http://dx.doi.org/10.1093/mutage/16.5.385

Stagos D, Spanou C, Margariti M, Stathopoulos C, Mamuris Z, Kazantzoglou G, Magiatis P, Kouretas D. 2007. Cytogenetic effects of grape extracts (Vitis vinifera) and polyphenols on mitomycin C-induced sister chromatid exchanges (SCEs) in human blood lymphocytes. Journal of Agricultural and Food Chemistry 55(13), 5246-5252. http://dx.doi.org/10.1021/jf0635255

Turkez H, Sisman T. 2012. The genoprotective activity of resveratrol on aflatoxin B-1-induced DNA damage in human lymphocytes in vitro. Toxicology and Industrial Health 28(5), 474-480. http://dx.doi.org/10.1177/0748233711414614

Turna F, Aksakal S, Demir E, Kaya B. 2014. Antigenotoxic effects of Resveratrol in somatic cells of Drosophila melanogaster. Fresenius Environmental Bulletin 23(9), 2116-2125.

Verma S, Bahorun T, Kumar A. 2012. N-methyl N-nitroso Urea induced altered DNA structure initiate hepatocarcinogenesis. Preventive Medicine 54, 130-136. http://dx.doi.org/10.1016/j.ypmed.2012.01.005

Wang DH, Ootsuki Y, Fujita H, Miyazaki M, Yie QX, Tsutsui K, Sano K, Masuoka N, Ogino K. 2012. Resveratrol inhibited hydroquinone-induced cytotoxicity in mouse primary hepatocytes. International Journal of Environmental Research and Public Health 9(9), 3354-3364. http://dx.doi.org/10.3390/ijerph9093354