Evaluation of phosphodissolvent IAA producing strains of Trichoderma, spp. through biometric response of Phaseolus vulgaris L

Paper Details

Research Paper 01/06/2016
Views (472) Download (6)
current_issue_feature_image
publication_file

Evaluation of phosphodissolvent IAA producing strains of Trichoderma, spp. through biometric response of Phaseolus vulgaris L

Dorcas Zúñiga-Silgado, León Darío Vélez Vargas
Int. J. Biosci.8( 6), 103-118, June 2016.
Certificate: IJB 2016 [Generate Certificate]

Abstract

Studies report that in addition to biocontrol effects, Trichoderma spp., exhibit phosphodissolvent and indole acetic acid (IAA) production capacities. In greenhouse laboratory conditions, the effects of four native strains of Trichoderma spp., were evaluated on the germination and growth of beans. Inoculants of each strain were prepared in concentrations of 104, 106, and 108 spores mL-1, which were then used to inoculate bean seeds and seedlings. The biometric variables evaluated were number of germinated seeds, germination percentage, germination velocity index, and median germination time. Later, germinated seeds were taken to greenhouse conditions and over the course of 90 days, height of seedlings, circumference of stalks, number of leaves, length of roots, number and mass of fruits, and overall dry mass were measured. The TRIC13 strain, with concentrations of 7 x 108 spores mL-1 , showed better results than the rest of the strains evaluated with respect to seed germination. However, in relation to growth and germination of bean plants, concentrations of 7 x 104 spores mL-1 were more efficient in all treatments evaluated. Considering the biometric variables evaluated, the study showed an ability of strains of Trichoderma to promote the growth and efficacy of greenhouse bean plants.

VIEWS 10

Abd-Alla MH. 1994. Use of organic phosphorus by Rhizobium leguminosarum biovarviceae phosphatases. Biology and Fertility of Soils 18, 216-218. http://dx.doi.org/10.1007/BF00647669

Achá C. 2008. Aislamiento y multiplicación de cepas nativas de Trichoderma sp y su evaluación como biocontrolador de Fusarium sp y Rhizoctonia solani en plantas de tomate. Tesis de Licenciatura en Ingeniería Ambiental, 1-94 p.

Altomare C, Norvell WA, Björkman T, Harman GE. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65(7), 2926-2933.

Arshad M, Frankenberger WT. 1993. Microbial production of plant growth regulators. In: Meeting FB, Ed. Soil Microbial Ecology. Marcel Dekker lnc. New York, 307-347 p.

Atlas R, Bartha R. 1998. Microbial Ecology. Addison Wesley Longman Inc, New York, 649 p.

Bar-Yosef B, Rogers RD, Wolfram JH, Richman E. 1999. Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal 63, 1703-1708. http://dx.doi.org/10.2136/sssaj1999.6361703x

Bashan Y, Holguin G, Bowers R. 1993. The degeneration of Cardon populations in Baja California Sur, Mexico. Cactus and Succulent Journal 65, 64-67

Besnard O, Davet P. 1993. Mise en évidence de souches de Trichoderma spp. à la fois antagonistas de Pythium ultimum et stimulatrices de la croissance des plantes. Agronomy Journal 13, 413-421.

Bolan NS, Naidu Mahimairaja RS, Baskaran S. 1994. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biology and Fertility of Soils 18, 311-319.

Börkman T, Blanchard LM, Harman GE.1998. Growth enhancement of shrunfen-2 (sh2) Sweet Corn by Trichoderma harzianum 1295-22: Effect of Environmental Stress. Journal of the American Society for Horticultural Science 123(1), 35-40.

Boul SW, Eswaran H. 2000. Oxisols. Advances in Agronomy 68, 151-195.

Brown RF, Mayer DG. 1988. Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals of Botany: Oxford Journals 57, 49-53.

Cappuccino G, Sherman N. 1998. Microbiology: A laboratory Manual. CA: Benjamin/Cumming Science Publishing.

Caipo ML, Duffy S, Zhao L, Schaffne DW. 2002. Bacillus megaterium spore germination is influenced by inoculum size. Journal of Applied Microbiology 92, 879-884. http://dx.doi.org/10.1046/j.1365-2672.2002.01597.x

Caldeira AT, Feio SS, Arteiro JMS, Coelho AV, Roseiro JC. 2008. Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. Journal of Applied microbiology 104, 808-816. http://dx.doi.org/10.1111/j.1365-2672.2007.03601.x

Calich VL, Purchio A, Paula CR. 1978. A new fluorescent viability test for fungi cells. Mycopathologia 66(3), 175-177. http://dx.doi.org/10.1007/BF00683967

Castro   A, Rivillas C. 2005. Bioregulación de Rhizoctonia solani en germinadores de café. Boletín Cenicafé. Avance Técnico N° 336, Chinchiná, Colombia.

Cepeda ML, Gamboa AM. 2001. Hongos solubilizadores de fosfato aislados de rizósfera de Espeletia grandiflora Humb. Y Bonpl. (Páramo El Granizo-Monserrate) y su efecto sobre la disponibilidad de fósforo en el suelo. Trabajo de Grado. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biologia. Bogotá.

Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechonlogy 25. http://dx.doi.org/1007-1014. 10.1038/nbt1325

Chigineva NI, Aleksandrovab AV, Marhanc S, Kandelerc E. 2011. The importance of mycelial connection at the soil–litter interface for nutrient translocation, enzyme activity and litter decomposition. Applied Soil Ecology 51, 35– 41. http://dx.doi.org/10.1016/j.apsoil.2011.08.009

Collados CC. 2006. Impacto de inoculantes basados en Azospirillum modificados genéticamente sobre la diversidad y actividad de los hongos de la micorriza arbuscular en rizósfera de trigo y maíz. Tesis Doctoral. Universidad de Granda. Facultad de Ciencias. Departamento de Microbiología. España.

Cubillos-Hinojosa J, Mejia L, Valero N. 2009. Trichoderma harzianum as a plant gwoth promoter in yellow passion fruit (Passiflora edulis var. flavicarpa Degener). Agronomía Colombiana 27(1), 81-86.

Cupull SR, Andréu R, Pérez NC, Delgado PY, Cupull MC. 2003. Efecto de Trichoderma viride como estimulante de la germinación, en el desarrollo de posturas de cafetos y el control de Rhizoctonia solani Kuhn. Centro Agrícola 30(1).

Dandurand L, Knudsen G. 1993. Influence of Pseudomonas fluorescent on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83(3), 265-270. http://dx.doi.org/10.1094/Phyto-83-265

de Freitas JR, Banerjee MR Germida JJ. 1997. Phosphate solubilizing rhizobacteria enhance the growth and yeild but not phosphorus uptake of canola (Brassica napus), Biology and Fertility of Soils 24, 358-364.

Flach EN, Quak W, Van Diest A. 1987. A comparison of the rock phosphate-mobilizing capacities of various crop species. Tropical Agriculture (Trinidad) 64, 347– 352.

García J, Monteith J, Squire G. 1982. Time, temperature, and germination of pearl millet (Pennisetum typhoides S. and H.). Journal of Experimental Botany: Oxford Journals 33, 288-296.

Garbeva P, van Veen JA, van Elsas JD. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecology 45, 302-316. http://dx.doi.org/10.1007/s00248-002-2034-8

Godes A. 2007. Perspectivas de los inoculantes fúngicos en Argentina, p. 11-14. In: Izaguirre-Mayoral ML. Labandera C. Sanjuán J, Eds. Biofertilizantes en Iberoamérica: una visión técnica, científica yempresarial. Imprenta Denad Internacional, Montevideo.

Gravel V, Antoun H, Tweddell RJ. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology Biochemistry 39(8), 1968-1977. http://dx.doi.org/10.1016/j.soilbio.2007.02.015

Gregory PJ. 2006. Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57, 2-12.

Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245, 83-93. http://dx.doi.org/10.1023/A:102066391625

Habte M, Osorio NW. 2001. Arbuscular mycorrhizas: producing and applying arbuscular mycorrhizal inoculum. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, 47 p.

Harman GE. 2000. Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease 84, 377–393. http://dx.doi.org/10.1094/PDIS.2000.84.4.377

Harman GE. 2006. Overview of mechanisms and uses  of Trichoderma spp. Phytopathology 96(2), 190-194. http://dx.doi.org/10.1094/PHYTO-96-0190

He ZL, Zhu J. 1997. Transformation and bioavailability of specifically sorbed phosphate on varaiable-carge mineral soils. Biology and Fertility of Soils 25, 175-181. http://dx.doi.org/10.1007/s003740050300

He ZL, Zhu J. 1998. Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biology and Biochemistry 30, 917-923.

Hernández T, Carrión G. Heredia G. 2011. In vitro phosphate solubilization by a strain of Paecilomyces lilacinus (Thom) Samson. Agrociencia 45, 881-892.

Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87, 4-10. http://dx.doi.org/10.1094/PDIS.2003.87.1.4

Hoyos-Carvajal LM, Orduz S, Bissett J. 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology. http://dx.doi.org/10.1016/j.fgb.2009.04.006

Iyamuremye F, Dick RP. 1996. Organic amendments and phosphorus sorption by soils. Advances in Agronomy, 56, 139-185 p.

Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135, 575-585. http://dx.doi.org/10.1046/j.1469-8137.1997.00729.x

Kim KY, McDonald GA, Jordan D. 1997. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils 24, 347-352. http://dx.doi.org/10.1007/s003740050256

Kloepper JW. 1993. Plant Growth Promoting Rhizobacteria as Biological Control Agents. En: F. B. Metting (Ed), Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., New York, USA.

Knox OGG, Killham K, Leifert C. 2000. Effects of increased nitrate availability on the control of plantpathogenic fungi by the soil bacterium Bacillus subtilis. Applied Soil Ecology 15, 227-231. http://dx.doi.org/10.1016/S0929-1393(00)00098-6

Kucey RMN. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science 63, 671-678. http://dx.doi.org/10.4141/cjss83-068

Kucey RMN, Leggett ME. 1989. Increased yields and phosphorus uptake by westar canola (Brassica napus L.) inoculated by a phosphate-solubilizing isolate of Penicillium bilaji. Canadian Journal of Soil Science 69, 425-432. http://dx.doi.org/10.4141/cjss89-042

Marschner P. 2008. The role of rhizosphere microorganisms in relation to P uptake by plants, p. 296. In: White PJ, Hammond JP, Eds. The ecophysiology of plant-phosphorus interactions, p. 165-176. © Springer Science. http://dx.doi.org/10.1007/978-1-4020-8435-58

Martinez SM, Martinez GA. 2000. Efects of Phosphate Solubilization Bacteria During the Rooting Period of SUGAR Cane (Saccharum offinarum), Venezuela 5171 Variety, on the Grower`s Oasis Substrate. Soil and Plant Nutrition 49, 2-9.

Mathews CK, Van Holde KE, Ahern KG. 2002. Biochemistry. Third edition. Benjamin Cummings, San Francisco, 1186 p.

Mc  Spadden-Gardener  BB.  2004.  Ecology  of Bacillus and Paenibacillus spp. In agricultural systems. Phytopathology 94, 1252-1258. http://dx.doi.org/10.1094/PHYTO.2004.94.11.1252

Miranda-Hernández M, Magdeel-Pérez G, Cupull SR. 1998. Efecto de Trichoderma y Azotobacter en la producción de posturas de cafeto. IP Gral. Lázaro Cárdenas dl Río. Trabajo de Diplomado.

Moity TH. 1982. Survinal off Trichoderma harzianum in soil and in Pea and Bean rhizospheres. Phytopathology 72(1), 121-125.

Moreno-Sarmiento N, Moreno-Rodríguez L, Uribe-Vélez D. 2007. Biofertilizantes para la agricultura en Colombia. pp. 38-45. In: Izaguirre-Mayoral ML, Labandera C, Sanjuán J, Eds. Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Imprenta Denad Internacional, Montevideo.

Ocampo BM, Patiño LF, Marín MA, Salazar M, Gutiérrez P. 2012. Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Revista Facultad Agronomía de la Universidad Nacional, Medellín 65, 6291-6303.

Osorio NW. 2008. Effectiveness of microbial solubilization of phosphate in enhancing plant phosphate uptake in tropical soils and assessment of the mechanisms of solubilization. Ph.D. Disertation. University of Hawaii, Honolulu, 392 p.

Osorno L, Osorio N. 2014. Effect of Carbon and Nitrogen Source and Concentration on Rock Phosphate Dissolution Induced by Fungi.Journal of Applied Biotechnology 2(2), 32-42. http://dx.doi.org/10.5296/jab.v2i2.5475

Prescott lM, Harley JP, Klein DA. 2004. microbiología 5 ed. mcgraw-hill interamericana, 1240 p.

Reva ON, Dixelius C, Meijer J, Priest FG. 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to bacillus amyloliquefaciens and bacillus subtilis. FEMS microbiology ecology 48, 249-259. http://dx.doi.org/10.1016/j.femsec.2004.02.003

Richardson AE, Hadobas PA, Hayes JE. 2001. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant Journal 25, 641-649. http://dx.doi.org/10.1046/j.1365-313x.2001.00998.x

Rodríguez H, Fraga R. 1999. Phosphate Solubilizing Bacteria and their Role in Plant Growth Promotion. Biotechnology Advances 17, 319-339.

Rodríguez H, Fraga RT, Gonzalez Y, Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 287, 15-21. http://dx.doi.org/10.1007/978-1-4020-5765-6_2

Rodríguez N, Rubiano ME. 2002. Aislamiento e identificación de hongos de fosfato aislados de cultivos de arroz y evaluación del p H y en concentraciones de sacarosa y cloruro de sodio sobre su actividad solubilizadora. Trabajo de Grado. Pontificia Universidad Javeriana. Bogotá.

Roos W, Luckner M. 1984. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. Journal of General Microbiology 130, 1007-1014. http://dx.doi.org/10.1099/00221287-130-4-1007

Samuels GJ. 2006. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology 96(2), 195-206.

Shoresh M, Harman GE. 2008a. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root:A proteomic approach. Plant Physiology 147, 2147-2163. http://dx.doi.org/10.1104/pp.108.123810

Shoresh M, Harman GE. 2008b. The relationship between increased grow and  resistance induced in plants by root colonizing microbes. Plant Signaling and Behavoir 3, 737-739. http://dx.doi.org/10.1104/pp.108.123810

Silvieira SV, Sousa PVD, Koller OC, Schwarz SF. 2003. Elementos minerales y carbohidratos en plantones de aguacate ´Carmen´ inoculados con micorrizas arbusculares. Proceedings V World Avocado Congreso, 415- 420 p.

Sutton J, Peng G. 1993. Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83, 615-621.

Torres-Rubio MG, Valencia-Plata SA, Bernal-Castillo J, Martinez-Nieto P. 2000. Isolation of enterobacteria, Azotobacter sp. and Pseudomonas sp. Producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Revista Latinoamericana de Microbiología 42, 171–176.

Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P. 2003. Progress in selected areas of rhizosphere research on P acquisition. Australian Journal of Soil Research 41, 471-499. http://dx.doi.org/10.1071/SR02130

Useche Y. 2003. Contribución al conocimiento de bacterias y hongos solubilizadores de fosfato bajo tres usos de suelo en el sur del Trapecio Amazónico. Trabajo de Grado. Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Biología. Bogotá.

Valencia H, Sánchez J, Valero N. 2005. Producción de ácido indolacético por microorganismos solubilizadores de fosfato presents en la rizósfera de Espeletia grandiflora y Calamagrostis effusa del Páramo el Granizo, p. 177-193. In: Bonilla M, Ed. Estrategias adaptativas de plantas de páramo y del bosque altoandino en la cordillera oriental de Colombia. Unibiblos, Bogotá.

Valencia H, Sánchez J, Vera D, Valero N, Cepeda M. 2007. Microorganismos solubilizadores de fosfatos y bacterias fijadoras de nitrógeno en páramos y región cálida tropical (Colombia) p. 169-183. In: Sánchez J. Ed. Potencial biotecnológico de microorganismos en ecosistemas naturales y agroecosistemas. Universidad Nacional de Colombia, Bogotá.

Valero N. 2003. Potencial biofertilizante de bacterias diazotrofas y solubilizadoras de fosfatos asociadas al cultivo de arroz (Oryza sativa L.). [Tesis de maestría] Maestría Interfacultades en Microbiología, Universidad Nacional de Colombia.

Valero N. 2007. Determinación del valor fertilizante de microorganismos solubilizadores de fosfato en cultivos de arroz, p. 169-183. In: Sánchez J, Ed. Potencial biotecnológico de microorganismos en ecosistemas naturales y agroecosistemas. Universidad Nacional de Colombia, Bogotá.

Venkateswardu B, Rao AV, Raina P. 1984. Evaluation of phosphorus solubilization by microorganisms isolated from Aridisols. J. Indian Soc. Soil Sci. 32, 273-277.

Vera D, Perez H, Valencia H. 2002.Aislamiento de hongos solubilizadores de fosfatos de la rizósfera de Arazá (Eugenia stipitata, Myrtaceae). Acta Biologica Colombiana. 7(1), 33-40.

Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255, 571-586. http://dx.doi.org/10.1023/A:1026037216893

Vinale F, Sivasithamparamb K, Ghisalbertic ML, Marra R, Woo S L, Lorito M. 2008. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry 40, 1-10. http://dx.doi.org/10.1016/j.soilbio.2007.07.002

Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K. 2006. Major secondary metabolites produced by twocommercialTrichodermastrains active against different phytopathogens. Lett Appl Microbiol 43, 143–148.

Windham M, Elad Y, Baker R. 1986. A mechanism for increased plant grow induced by Trichoderma spp. Phytopathology 76, 518-521.

Whitelaw MA. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69, 99-151. http://dx.doi.org/10.1016/S0065-2113(08)60948-7

Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W. 2009. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Applied Biochemistry and Biotechnology 159, 330-342. http://dx.doi.org/10.1007/s12010-009-8590-3

Yedidia I, Benhamou N, Chet I. 1999. Induction of defence responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology 65, 1061-1070.

Zambrano C. 1989. Efecto de la concentración de inóculo de Trichoderma harzianum sobre el desarrollo de Macrophomina phaseolina. p. 56. En: Resúmenes XI Seminario Nacional de Fitopatología. Sociedad Venezolana de Fitopatología. 19 al 23 de Noviembre 1989. Trujillo, Venezuela.

Zúñiga D, Becerra E. 2014. Effectiveness of Trichoderma spp. at controlling Fusarium Oxysporum f.sp. phaseoli in bean plants at a greenhouse scale. International Journal of Biosciences 5(9), 21-36. http://dx.doi.org/10.12692/ijb/5.9.21-36

Zúñiga D, Hoyos R, Afanado L. 2010. Evaluación de plántulas de cardamomo (Elettaria cardamomum (L.) Maton) por su resistencia in vitro al filtrado de cultivo de Fusarium oxysporum Link. Vitae 17(2), 155-164.