Evaluation of rice varieties using proteomic approach

Paper Details

Research Paper 01/10/2013
Views (756)
current_issue_feature_image
publication_file

Evaluation of rice varieties using proteomic approach

Shazia Dilber, Khushi Muhammad, Inamullah, Muhammad Shahid Nadeem , Fida Muhammad Abbasi, Nazia Akbar, Ikram Muhammad, Habib Ahmad
Int. J. Biosci. 3(10), 8-14, October 2013.
Keywords: Proteomics, Rice, SDS-PAGE
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

In present study, proteomics approach was used to evaluate three varieties i.e. Bas-385, Indica and KS-282 of rice. Total crude protein was isolated from root, endosperm, embryo and leaf sheath and leaf blade of these varieties and it was separated by SDS-PAGE. The protein bands were scored and used to compare the rice varieties. Seven protein bands in endosperm, six in embryo, seven in roots, six in leaf sheath and seven in leaf blade were recorded conserved proteins during this study. Three protein bands of 25, 30 and 160KDa were detected in the endosperm protein of Bas-385 and JP-5, sharing a common genetics of Basmati and non Basmati. A band of 17KDa was detected in the embryo of Bas-385 while absent in KS-282 and JP-5. Three protein bands i.e. 27, 90 and 120KD were detected in the leaf blade of Bas-385. A band of 45KDa was detected in the leaf blade of JP-5 and absent in KS-282 and Bas-385. A band of 61KDa and three bands of 25, 85 and 175KDa were detected in the embryo and leaf sheath of JP-5 respectively and absent in KS-282 and Bas-385. It is indicating that these proteins could determine the Japonica characters in JP-5. Two bands of 35KDa and 40KD were recorded in endosperm and root of KS-282 respectively while absent in Bas-385 and JP-5. This study explored that there are proteins that are specific for Basmati rice and non Basmati rice or Indica and Japonica rice and could be used to identify rice cultivars.

Anonymous. 2006. data at: http://faostar.fao.rog. Anonymous. 2008. Global Agriculture Information Network (GAIN) report. Pakistan grain and feed annual report 2011. USDA foreign Agriculture Service. GIAN report number: PK8031.

Anonymous. 2009. Government of Pakistan, Pakistan Statistical Year book, 2009. Pakistan Federal Bureau of Statistics, 28 p.

Beachy RN. 2003. IP policies and serving the public. Science 299(606), 473.

Chen LFO, Chen LC. 1989. Inheritance of two endosperm protein loci in rice (Oryza saliva L.). . Theoretical and Applied Genetics 78(6), 788-792.

Collard BCY, Cruz CMV, McNally KL, Virk PS, Mackill DJ. 2008. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations. International Journal of Plant Genome 2008, 1-25. http://dx.doi.org/10.1155/2008/524847

Datta SK, Khush GS. 2002. Improving rice to meet food and nutrient needs: Biotechnological approaches. Journal of Crop Production 61, 229-247.

Francis SE, Ersoy RA, Ahn J-W, Atwell BJ, RoCollards TH.2012. Serpins in rice: protein sequence analysis, phylogeny and gene expression during development. BMC Genomics 13, 449.

Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al. 2002. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science 296(5565), 92-100. http://dx.doi.org/10.1126/science.1068275

Grist DH. 1986. Rice. Tropical Agriculture Series. Longman publisher, New York.

Guo G, Lv D, Yan X, Subburaj S, Ge P, Li X, Hu Y, Yan Y. 2012. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biology 12, 147.

Habib M, Wani SA, Zargar GH, Habib M. 2000. Seed protein profile and isozyme polymorphism as markers for identification of some important rice cultivars. Applied Biological Research 2, 55-59.

Kochko A. 1987. Isozymic variability of traditional rice, Oryza sativa L. in Africa. Theoretical and Applied Genetics 73, 675-682.

Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Li D, Wang L, Teng S, Zhang G, Guo L, Mao Q, Wang W, Li M, Chen L. 2012. Proteomics Analysis of Rice Proteins Up-regulated in Response to Bacterial Leaf Streak Disease. Journal of Plant Biology 55, 316-324. http://dx.doi.org/10.1007/s12374-011-0346-2

Lockhart BE, Menke J, Dahal G, Olszewski, NE. 2000.Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. Journal of General Virology 81, 1579–1585.

Morell JRA, Macia FAC, Marin GC, Yufera EP. I987. Differentiation of rice varieties by electrophoresis of embryo protein. Theoretical and Applied Genetics 74, 224-232.

Rahman MS, Molla MR, Alam MS, Rahman L. 2009. DNA fingerprinting of rice (Oryza sativa L.) cultivars using microsatellite markers. Australian Journal of Crop Science 3(3), 122-128.

Santhy V, Niral V, Dadlani M. 1998. Biochemical markets for characterizing rice genotypes. International Rice Research Notes 23, 10.

Sasaki, T. 1998. The rice genome project in Japan. Proceedings of the National Academy of Sciences U. S. A. 95, 2027-2028.

Sengupta S, Chattopadhyay NC. 2000. Rice varietal identification by SDS-PAGE. Seed Science Technology 28, 871-873.

Yu J, Hu S, Wang J, Wong G K-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, et al. 2002. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science 296(5565), 79-92. http://dx.doi.org/10.1126/science.1068037

Zou J, Liu C, Chen X. 2011. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. Plant cell Report 30(12), 2155-2165.

Related Articles

Muscle type and meat quality of local chickens according to preslaughter transport conditions and sex in Benin

Assouan Gabriel Bonou*, Finagnon Josée Bernice Houéssionon, Kocou Aimé Edenakpo, Serge Gbênagnon Ahounou, Chakirath Folakè Arikè Salifou, Issaka Abdou Karim Youssao, Int. J. Biosci. 27(6), 241-250, December 2025.

Effects of micronutrients and timing of application on the agronomic and yield characteristics of cucumber (Cucumis sativus)

Princess Anne C. Lagcao, Marissa C. Hitalia*, Int. J. Biosci. 27(6), 214-240, December 2025.

Response of different soybean varieties to phosphorus fertilizer microdosing and rhizobium inoculation in the sub-humid zone of Northern Benin

Pierre G. Tovihoudji*, Kamarou-Dine Seydou, Lionel Zadji, Sissou Zakari, Valerien A. Zinsou, Int. J. Biosci. 27(6), 201-213, December 2025.

On-farm validation of black soldier fly larvae meal as a sustainable replacement for shrimp meal in rainbow trout diets in the mid hills of Nepal

Ishori Singh Mahato, Krishna Paudel*, Sunita Chand, Anshuka Bhattarai, Int. J. Biosci. 27(6), 189-200, December 2025.

Insect fauna associated with Cucumis sativus (Cucurbitales: Cucurbitaceae) in Parakou, A cotton-growing area of central Benin

Lionel Zadji*, Mohamed Yaya, Roland Bocco, Prudencia M. Tovignahoua, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, Hugues Baimey, Leonard Afouda, Int. J. Biosci. 27(6), 175-188, December 2025.

First record of two hymenopteran species, Brachymeria excarinata Gahan (Chalcididae) and Pteromalus sp. (Pteromalidae), as hyperparasitoids of Diadegma insulare in Senegal

Babacar Labou*, Etienne Tendeng, Mamadou Diatte, El hadji Sérigne Sylla, Karamoko Diarra, Int. J. Biosci. 27(6), 167-174, December 2025.

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.