Experimental investigation on the anaerobic digestibility of selected vegetable wastes for biogas production

Paper Details

Research Paper 01/02/2019
Views (840)
current_issue_feature_image
publication_file

Experimental investigation on the anaerobic digestibility of selected vegetable wastes for biogas production

Antonio-Abdu Sami M. Magomnang, Nessan Joe V. Ipulan
Int. J. Biosci. 14(2), 81-90, February 2019.
Copyright Statement: Copyright 2019; The Author(s).
License: CC BY-NC 4.0

Abstract

Due to the inefficient transportation and inability to preserve those agricultural products can be rotten and wasted. As a solution, to determine the viability of the selected vegetable wastes co-digested with cow and pig manure as a feedstock to produced biogas. The experiment conducted in a batch-type anaerobic co-digestion process under the mesophilic condition for 30 days of digestion. Agricultural products such as cabbage, Chinese cabbage, and lettuce are mixed with cow and pig manure subject to different particle sizes of 2.00 mm, 4.00 mm and 6.35 mm. Based on the experiments, it was observed that the temperature of the digester over the 30 days digestion period was 28 – 31 oC. Moreover, the effect of smaller particle size shows the highest biogas volume production of 1733.70 ml than the other particle sizes. In addition, the carbon dioxide concentration recorded as 14 – 16%, as well as the hydrogen sulfide concentration of 6 – 18 ppm. Furthermore, the effect sodium hydroxide buffer solution improves the pH concentration of the substrate but it does not reach the required pH values for methane formation which is 7.0; and other vegetable wastes such as lettuce, cabbage resulted in the failure of biogas production due to ammonia inhibition that affects the methane production process. Thus, the biogas production from these wastes can be used as an energy source for cooking, heating, and power generation applications.

Anti H. 2012. Addition of Esters on Anaerobic Digestion: Inhibiting or Boosting Biogas Production”Master’s Thesis. Chalmers University of Technology,  Goteborg, Sweden.

Anunputtikul W, Rodtong S. 2004. Investigation of the potential production of biogas from cassava tuber. In Proceedings to the 15th Annual Meeting of the Thai Society for Biotechnology and JSPS-NRCT Symposium, p 70.

Aslanzadeh S, Özmen P. 2009. Biogas production from municipal waste mixed with different portions of orange peel. Master’s Thesis, University of Borås.

Deublein D, Steinhauser A. 2011. Biogas from waste and renewable resources: an introduction. John Wiley & Sons.

Esposito G, Frunzo L, Liotta F, Panico A, Pirozzi F. 2012. Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. The Open Environmental Engineering Journal 5(1), p 1-8.

Moset V, Poulsen M, Wahid R, Højberg O, Møller HB. 2015. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial biotechnology 8(5), p 787-800.

Muyiiya ND, Kasisira LL. 2009. Assessment of the Effect of Mixing Pig and Cow Dung on Biogas Yield. Agricultural Engineering International: the CIGR Ejournal 11, p 1-7.

Tenagne GF. 2016.Production of biogas from onion (Allium cepa L.) peels co-digested with cow dung. Dissertation, Haramaya University, Ethiopia.

Sebola MR, Tesfagiorgis HB, Muzenda E. 2015. Methane production from anaerobic co-digestion of cow dung, chicken manure, pig manure and sewage waste. In Proceedings World Congress Engineering, p 1-3.

Sreekrishnan TR, Kohli S, Rana V. 2004. Enhancement of biogas production from solid substrates using different techniques: a review. Bioresource Technology, p 95(1), 1-10.

Related Articles

Sensory acceptability of gnocchi pasta added with different levels of malunggay (Moringa oleifera) leaves and blue ternate (Clitoria ternatea) flowers

Ralph Justyne B. Bague, James Troyo, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(1), 103-114, January 2026.

Spatio-temporal analysis of vegetation cover and socio-environmental implications in Korhogo (Northern Côte d’Ivoire) from 1990-2020

Adechina Olayossimi*, Konan Kouassi Urbain, Ouattara Amidou, Yao-Kouamé Albert, Int. J. Biosci. 28(1), 94-102, January 2026.

Predicting the habitat suitability of Vitellaria paradoxa under climate change scenarios

Franck Placide Junior Pagny*, Anthelme Gnagbo, Dofoungo Kone, Blaise Kabré, Marie-Solange Tiébré, Int. J. Biosci. 28(1), 73-83, January 2026.

Performance response dynamics of rabbits (Oryctolagus cuniculus) to locally sourced, on-farm feed ingredients during the growing phase: Implications for the institutional rabbit multiplier project

Roel T. Calagui*, Janelle G. Cadiguin, Maricel F. Campańano, Jhaysel G. Rumbaoa, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Int. J. Biosci. 28(1), 65-72, January 2026.

Chronopharmacology: Integration of circadian biology in modern pharmacotherapy

Sangram D. Chikane*, Vishal S. Adak, Shrikant R. Borate, Rajkumar V. Shete, Deepak V. Fajage, Int. J. Biosci. 28(1), 56-64, January 2026.

Evaluation of the impact of floristic diversity on the productivity of cocoa-based agroforestry systems in the new cocoa production area: The case of the Biankouma department (Western Côte d’Ivoire)

N'gouran Kobenan Pierre, Zanh Golou Gizele*, Kouadio Kayeli Anaïs Laurence, Kouakou Akoua Tamia Madeleine, N'gou Kessi Abel, Barima Yao Sadaiou Sabas, Int. J. Biosci. 28(1), 44-55, January 2026.

Utilization of locally sourced feed ingredients and their influence on the growth performance of broiler chickens (Gallus gallus domesticus): A study in support of the school’s chicken multiplier project

Roel T. Calagui*, Maricel F. Campańano, Joe Hmer Kyle T. Acorda, Louis Voltaire A. Pagalilauan, Mary Ann M. Santos, Jojo D. Cauilan, John Michael U. Tabil, Int. J. Biosci. 28(1), 35-43, January 2026.