Experimental Investigation on the Developed Portable Biogas System utilizing Agricultural Biomass Wastes for Thermal Applications

Paper Details

Research Paper 01/12/2020
Views (503)
current_issue_feature_image
publication_file

Experimental Investigation on the Developed Portable Biogas System utilizing Agricultural Biomass Wastes for Thermal Applications

Antonio-Abdu Sami M. Magomnang, Dianne Mae M. Asiñero
Int. J. Biosci. 17(6), 218-226, December 2020.
Copyright Statement: Copyright 2020; The Author(s).
License: CC BY-NC 4.0

Abstract

Woody biomass such as forest residues and fast-growing trees are used as a source of fuel for cooking and heating that contributes to deforestation and forest degradation. Not knowing, that this biomass can also be utilized as a source of energy when the organic material such as animal manure, agricultural biomass wastes decomposes under anaerobic conditions. This study aims to evaluate the performance of the developed portable biogas system using agricultural biomass wastes as a source of fuel for thermal applications. The developed system was modified to become portable making it ideal for transport in remote areas where fuel is not easily accessible. Then it is tested and deployed to rural and remote areas by conducting thermal experiments. The results show that the developed system is capable to produce and supply gaseous fuel for thermal regardless of the gas volume and time duration. Thus, the study could help to replace traditional wood-based cooking with a renewable energy system utilizing agricultural biomass wastes as a source of fuel that can be used in rural and remote areas.

Jagger P, Pedit J, Bittner A, Hamrick L, Phwandapwhanda T, Jumbe C. 2017. Fuel efficiency and air pollutant concentrations of wood-burning improved cookstoves in Malawi: implications for scaling-up cookstove programs. Energy for Sustainable Development 41, 112-120. https://doi.org/10.1016/j.esd.2017.08.007

Jetter JJ, Kariher P. 2009. Solid-fuel household cookstoves: characterization of performance and emissions. Biomass and Bioenergy 33(2), 294-305. https://doi.org/10.1016/j.biombioe.2008.05.014

Capareda SC. 2011. Biomass energy conversion. Sustainable growth and applications in renewable energy sources (1), 19. Capareda SC. 2014. Introduction to Biomass Energy Conversions, CRC Press.

Philippine National Standards. 2001. Build a Biogas Plant – Home. Retrieved March 29, 2020, from https://www.build-a-biogasplant.com/PDF/pns.413.2003.pdf

Olugasa TT, Odesola IF, Oyewola MO. 2018. Biogas Purification and Compression for use in Spark Ignition Engines. In International Conference of Mechanical Engineering (Vol. 2018).

Rathod VP, Bhale PV, Mehta RS, Harmani K, Bilimoria S, Mahida A, Champaneri H. 2018. Biogas Production from Water Hyacinth in the Batch type Anaerobic Digester. Materials Today: Proceedings 5(11), 23346-23350. https://doi.org/10.1016/j.matpr.2018.11.072

Related Articles

Study on physico-morphological characteristics of Betel vine cv. Khasia pan genotypes grown in northeastern hilly region of Bangladesh

J. C. Sarker, F. Ahmed, M. H. M. B. Bhuyan, S. Debnath, S. M. L. Rahman, Int. J. Biosci. 27(1), 343-354, July 2025.

Plant growth promoting and biocontrol activity of Rhizobium meliloti against plant pathogens

R. Nithyatharani, S. Subashini, M. Vinoth, R. Krishnan, Int. J. Biosci. 27(1), 336-342, July 2025.

Effect of rhizobial inoculant in combination with vermicompost and molybdenum on soybean in pot condition

Sharmin Ara Jannat, Md. Azizul Haque, Saiyera Chowdhury, Alif Hossain, Int. J. Biosci. 27(1), 328-335, July 2025.

Ectoparasite species diversity and prevalence in pigs (Sus scrofa domesticus) within delta central senatorial district, Delta State, Nigeria

Ede E. Lemy, Awharitoma O. Agnes, Orhewere D. A. Regina, Omoregie O. Anthony, Owhororo Ejiro, Int. J. Biosci. 27(1), 320-327, July 2025.

Assessment of wild bird diversity in a lake ecosystem under agricultural pressure during drought in Northern Côte d’Ivoire

Ekoun Michaël Konan, Coffi Jean Magloire Niamien, Valerie Florence Guétondé, Amari Diane Prisca Baka, Kouassi Hilaire Yaokokoré-Béibro, Int. J. Biosci. 27(1), 306-319, July 2025.

Lipid peroxidation and antioxidant status in 2,4,6-octatrienoic acid treated A549 and HCT-116 cancer cells

Shanmugam M. Sivasankaran, Raju Kowsalya, Krishnan Baskaran, Chakravarthy Elanchezhiyan, Int. J. Biosci. 27(1), 291-296, July 2025.

Public health implications of microbial contamination in registered slaughterhouses: A case study from La Union, Philippines

Carlo G. Fernandez, Harlene S. Fernandez, Priscilo P. Fontanilla Jr., Reinalyn D. Austria, Int. J. Biosci. 27(1), 272-290, July 2025.