Faecal coliforms and faecal streptococci community in the water of SidiChahed dam and these emissaries Mikkes and Mellah (Morocco): the importance of some environmental chemical factors

Paper Details

Research Paper 01/06/2014
Views (164) Download (6)
current_issue_feature_image
publication_file

Faecal coliforms and faecal streptococci community in the water of SidiChahed dam and these emissaries Mikkes and Mellah (Morocco): the importance of some environmental chemical factors

Smahane Mehanned, Abdelkader Chahlaoui, Abdelhamid Zaid, Mohamed Chahboune, Radouane EL Moustaine
J. Bio. Env. Sci.4( 6), 114-123, June 2014.
Certificate: JBES 2014 [Generate Certificate]

Abstract

A bacteriological and chemical study was carried out within 1 year, from December 2012 to November 2013, on sidiChahed dam and these emissaries Mikkes and Mellah upstream of the SidiChahed dam of Morocco. It assessed the importance of some chemical factors on some faecal bacterial communities. The monthly average densities of faecal coliforms and faecal streptococci varied, respectively, from 3 to 1820 CFU/100mL, and from 0 to 6734 CFU/100 mL of water. These bacterial abundances undergo spatio-temporal fluctuations. Most of the chemical characteristics of these waters are relatively stable with time, with respect to apparent spatial fluctuations. The degree of correlation between chemical parameters and the abundance dynamics of isolated bacteria is high heterogeneous. In our study constituted two wadi and dam, the increase in SDS, electrical conductivity not favored the abundance of faecal coliforms and faecal streptococci.The principal component analysis (PCA) showed that the indicator of fecal contamination have a significant negative correlation with pH, electrical conductivity and TDS and the high significant positive correlation with temperature.

VIEWS 4

ABHS (Agence du Bassin Hydraulique du Sebou). 2011. Etude d’actualisation du plan Directeur d’aménagements intégrés Des ressources en eau du bassin, mission note de synthèse, Septembre 2011.

Alther GA, 1979. A simplified statistical sequence applied to routine water quality analysis: a case history. Ground Water 17, 556-561.

Alberto WD, Del PDM, Valeria AM, Fabiana PS, Cecilia HA, De Los ABM. 2001. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquıa River Basin (Cordoba-Argentina). Water Res 35, 2881-2894.

Anazawa K, Ohmori H. 2005. The hydrochemistry of surface waters in Andesitic Volcanic area, Norikura volcano, central Japan. Chemosphere 59, 605-615.

Brown CE. 1998. Applied Multivariate Statistics in Geohydrology and Related Sciences. Springer, New York.

Danielsson A, Cato I, Carman R, Rahm L. 1999. Spatial clustering of metals in the sediments of the Skagerrak/Kattegat. Appl. Geochem14, 689-706.

Demirel Z. 2007. Monitoring of Heavy Metal Pollution of Groundwater in a Phreatic Aquifer in Mersin-Turkey, Environmental Monitoring and Assessment, 132, pp. 15-23 .

Dommergues Y, Mangenot F. 1970. In: Masson et Cie, editor. Soil microbialecology. Paris, 796pp.

El Ghachtoul Y, Alaoui Mhamidi M, Gabi H. 2005. Eutrophication of the Smir and Sehlaréservoirs (Morocco): causes, conséquences and tools to aid in water management. Journal of Water Science 18, 75-89.

Farnham IM, Stetzenbach KJ, Singh AK, Johannesson KH. 2000. Deciphering groundwater flow systems in Oasis Valley, Nevada, Using trace element chemistry, multivariate statistics and Geographical Information System. Math. Geol. 32, 943-968.

Fein JB, Daughney CJ, Yee N, Davis TA. 1997. A chemicalequilibrium model for metal adsorption onto bacterialsurfaces. Geochimet Cosmochim Acta, 61, 3319–28.

Fowle DA, Fein JB. 2000. Experimental measurements of the reversibility of metal–bacteria adsorption reactions. ChemGeol, 168, 27–36.

Fujikawa H, Ushioda H, Kudo Y. 1992. Kinetics of E. coli destruction by microwave irradiation.Appl Environ Microbiol, 58, 920–4.

Helena B, Pardo R, Vega M, Barrado E, Fernandez J, Fernandez L. 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis, Water Res 34(3), 807–816.

Hébert S. et S. Légaré. 2000. Suivi de la qualité des rivières et petits cours d’eau. Direction du suivi de l’état de l’environnement, ministère de l’Environnement, Québec, envirodoq No ENV-2001-0141, rapport N° QE-123, 24 p. et 3 annexes.

Latati AB. 1985. Thoughts on karst water resources in the Middle Atlas Mountains Morocco. Karst Water. Resources (Proceedings of the Ankara -Antalya Symposium, July 1985). IAHS Publ. N°. 161, 633-642.

Meng SX, Maynard JB. 2001. Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from Butucatu aquifer in Sao Paulo State, Brazil. J. Hydrol. 250, 78- 97.

Mohamed Chahboune, Abdelkader Chahlaoui, Abdelhamid Zaid. 2014. Contribution to comparative study of the physico-chemical quality of waters of Moulouya and Ansegmir rivers in upstream of Hassan II dam (Province of Midelt, Morocco), Journal of Biodiversity and Environmental Sciences (JBES), Vol. 4, No. 2, p. 278-288.

Mokhtar B. 2004. Les ressources en eau au Maroc. UN Water-Africa.

Ouhmidou M, et Chahlaoui A. 2013.  Qualité physico-chimique des eaux du barrage hassanaddakhilerrachidia-maroc. ScienceLib Editions Mersenne : Volume 5, N ° 130908 .ISSN 2111-4706 : 2013-09-23.

Pradeep JK. 1998. Hydrogeology and quality of ground water around Hirapur, DistrictSagar (M.P.), Pollution Resources, 17(1), pp. 91–94.

Pelmont J. 1993. Bacterium and environment. Physiological adaptations. Presse Universitaire of Grenoble ed., Grenoble,. 899pp.

Rodier J, Legube B, Merlet N, et coll. 2009. L’analyse de l’eau. Eaux naturelles, eaux résiduaires, eau de mer. Dunod, 9e éd, 1579 p.

Taltasse P. 1953. Recherches géologiques et hydrogéologiques dans le bassin lacustre de Fès-Meknès. Notes et Mémoires du Service Géologique, Maroc, 115, 152 p.

Yee N, Fein JB, Daughney CJ. 2000. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria mineral adsorption. GeochimetCosmochimActa, 64, 609–17.

Williams RE. 1982. Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Groundwater 20, 466-478.