Flood Analysis in Kali Lamong Watershed

Paper Details

Research Paper 01/02/2016
Views (658)
current_issue_feature_image
publication_file

Flood Analysis in Kali Lamong Watershed

Diah Susilowati, M. Bisri, Kliwon Hidayat, Arief Rachmansyah
J. Biodiv. & Environ. Sci. 8(2), 61-73, February 2016.
Copyright Statement: Copyright 2016; The Author(s).
License: CC BY-NC 4.0

Abstract

Sub-watershed of Kali Lamong is includes in parts of downstream Bengawan Solo Watershed that flooded every year. The risk of flood lead to the disadvantage of various aspects of life, e.g. properties, facilities and infrastructure, socio-economy factors, decreased land productivity and environmental quality. The aims of this study were: (1) to determine the integrated spatial model of land use with river hydrodynamic model towards the flood potential by GIS method; (2) to know the watershed responses for the flood risk valuation; (3) to determine the flood risk analysis model regards to controlling land functions in the area of Kali Lamong Watershed. First, we used problem identification method, continued by area assessment and model development. Area assessment consisted of demands, data collection and data processing. Data development includes Hydrology Integrated Model and Dynamic GIS. Data processed by model testing and model application and result the Decision Support System (DSS) Model. Results obtained the total flooded area in Q5 is 15,805.284 ha, Q10 16,632.930 ha, Q5-50 17,359.265 ha, and Q100 17,956.701 ha. The flood (input debit 300 m3/s) expands along the Districts of Sambeng to Mantup, Balongpanggang to the north Benjeng, Kebomas, Menganti, and Benowo which passed by Kali Lamong. The land use areas which affected most are rainfed paddy field and ponds for all distance period. Thus we concluded that if the average rainfall on Kali Lamong is more than 100 mm/s, then the area surround Kali Lamong will be overflooded.

Ackermann E. 1994. Direct and mediated experience: their role in learning. In: Lewis R, Mendelsohn P, Eds. Lessons from learning. Amsterdam: North-Holland.

Ackermann F. 1992.Strategy development and implementation- the role of a Group Decision Support System. In: Kinney S, B. Boastrom, Watson R, Eds. Computer augmented teamwork: a guided tour. New York: Van Nstrand.

Beven KJ, Kirby MJ. 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24, 43-69.

Chairat S, Delleur JW. 1993. Integrating a physically based hydrological model with GRASS. In: Kovar K, Nachtnebel HP, Eds. Application of Geographic Information Systems in hydrology and water resources management. Proceeding of International Conferences HydroGIS, No 211. Vienna: IAHS Publisher, 143-150.

Dewandaru GGT, Lasminto U. 2014. Studi penanggulangan banjir Kali Lamong terhadap genangan di Kabupaten Gresik. Jurnal Teknik POMITS 3(2), C35-C40.

IPF. 1994. The program system SCOP: product information of the Institute for photogrammetry and remote sensing. Vienna, Austria: Vienna University of Technology.

Soewarno. 1995. Hidrologi aplikasi metode statistik untuk analisa data. Bandung: Penerbit Nova, 114-194.

Sukatja C. 2004. Memanfaatkan program ILWIS 3.12 untuk menayangkan foto udara secara stereo pada layar komputer dan aplikasinya dalam usaha pengelolaan sumber daya air. Proceeding of Annual Scientific Gathering (PIT) HATHI, XXI. Denpasar: HATHI, 1-12.

Related Articles

Household socio-agricultural profiles and the adoption of crop protection strategies in human-wildlife conflict contexts: Insights from western Côte d’Ivoire around mount Sangbé National Park

Koffi Kouamé Christophe, Ouffoue Affoué Eugénie Naomie, Gagbé Dalié Sylvestre, Beda Alex, J. Biodiv. & Environ. Sci. 27(5), 91-103, November 2025.

Influence of biosynthesized silver nanoparticles on pollen germination and tube growth in Catharanthus roseus (L.) G. Don

Abhijit Limaye, Shreya Mulay, Jidnyasa Jangale, Rasadnya Joshi, Swapna Sathe, Kishor Bhosale, J. Biodiv. & Environ. Sci. 27(5), 85-90, November 2025.

Genetic diversity of parasitoids and entomopathogenic nematodes of Spodoptera frugiperda Smith, 1797 (Lepidoptera: Noctuidae) in Senegal

Farma Fall Babou, Toffène Diome, Mama Racky Ndiaye, Mbacké Sembene, J. Biodiv. & Environ. Sci. 27(5), 69-84, November 2025.

Environmental and socio-economic impacts of pollution by Eichhornia crassipes (Mart.) Solms in the waters of Dams No. 2 and No. 3 in the city of Ouagadougou, Burkina Faso

Florent Y. Lankoande, Jerome T. Yameogo, Asseta Tabsoba, S. E. I. Bama, J. Biodiv. & Environ. Sci. 27(5), 59-68, November 2025.

Evaluation of grains and haulms production of soybean varieties in production areas with high livestock potentiality in Benin

Assouan Gabriel Bonou, Alain Sèakpo Yaoitcha, Serge Aklinon, J. Biodiv. & Environ. Sci. 27(5), 51-58, November 2025.

Aparri townsmen online portal: Sustaining access and improving delivery of key information services

Marie Khadija Xynefida P. Ontiveros, Billy S. Javier, Corazon T. Talamayan, Jhunrey C. Ordioso, Estela L. Dirain, J. Biodiv. & Environ. Sci. 27(5), 35-50, November 2025.

Assessment of physicochemical properties of various sources of water and their impact on human health

S. Rizwana Begum, T. A. K Mumtaz Begum, Mrs. Nousheen Irfana, J. Biodiv. & Environ. Sci. 27(5), 25-34, November 2025.

Assessment of macroinvertebrate diversity and water quality of the Malaprabha river near Munavalli, Belagavi district, Karnataka state, India

Mr. Shama Shavi, Rajeshwari D. Sanakal, J. Biodiv. & Environ. Sci. 27(5), 12-24, November 2025.