Gaseous emission estimations from earth’s land Fishponds, Cameroon

Paper Details

Research Paper 01/03/2017
Views (251) Download (18)
current_issue_feature_image
publication_file

Gaseous emission estimations from earth’s land Fishponds, Cameroon

Efole Ewoukem Thomas, Hassouna Mélinda, Robin Paul, Mikolasek Olivier, Aubin Joël, Ombredane Dominique
J. Bio. Env. Sci.10( 3), 139-146, March 2017.
Certificate: JBES 2017 [Generate Certificate]

Abstract

Global warming is an important determinant of life on the earth. Estimating the effect of management practices on gas emissions (ammonia and greenhouse) is a new challenge for the sustainable development of fish farming and increase productivity of fish ponds. This work presents a simple method to compare various fish ponds where input levels or number of fish species varies. Air was collected during 24 hours in tedlar bags rainy season and dry season, either outside and just above the water level of eight earth’s land fish ponds at the aquaculture experimental platform of the University of Dschang-Cameroon (5°26.69-71’NL and 10°04.187-315′). The air was analyzed for CO2, CH4, NH3, N2O using photo acoustic spectrometry. The fish ponds had various input levels. Concentration gradients were calculated and interpreted based on the mass balance of the system. Results showed that CO2 gradients were higher with higher temperatures (26°C), and higher in the fish ponds with higher organic inputs and CH4 sinks related to a higher oxygen level in the water due to higher photosynthesis and the large deposit of death plankton on the bottom. NH3 and N2O gradients were significantly correlated while no correlation was detected between NH3 and CO2. It is assumed that higher nitrogen input or higher fish population induced higher NH3 emission and higher nitrogen turn-over inducing limited N2O emission and nitrite accumulation below toxic levels. Pond management can both improve feed efficiency of fish production and reduce NH3, N2O and CH4 emissions.

VIEWS 17

APHA. 1985. America Public Health Agency, Standard methods for the examination of water and waste-water. APHA-AWWAWPCF (Ed.) Pensylvania, Washington 1150 p.

Bambace LA, Ramos W, Lima F M, Rosa IBT. 2007. Mitigation and recovery of methane emissions from tropical hydroelectric dams. Energy 32, 1038-1046.

Bastviken D, Cole J, Pace M, Tranvik L. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, global biogeochemical cycles 18, 4 DOI: 10.1029/2004GB002238.

Béné C, Arthur R, Norbury H, Allison EH, Beveridge M, Bush S, Campling L, Leschen W, Little D, Squires D, Thilsted SH, Troell M, Williams M. 2015. Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence, World Development 79, 177-196. http://dx.doi.org/10.1016/j.worlddev. 2015.11.007.

Besson M, Aubin J, Komen H, Poelman M, Quillet E, Vandeputte M, van Arendonk JAM, de Boer IJM. 2016. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations, journal of cleaner production 116, 100-109.

Bonnefoy C, Quenol H, Planchon O, et Barbeau G. 2010. Températures et indices bioclimatiques dans le vignoble du Val de Loire dans un contexte de change ment climatique, Echo Géo [En ligne], 14 | 2010, mis en ligne le 13 December 2010, consulté le 30 September 2016. DOI: 10.4000/echogeo.12146.

Boyd Claude E, Watten Barnaby J, Goubier Vincent, Dance & Wu Ruiquan. 1994. Gas Supersaturation in Surface Waters of Aquaculture Ponds. Aqua cultural Engineering 13, 31-39.

Dagnelie P. 2003. Principes d’expérimentation: pacification des expériences et analyse de leurs résultats. Gembloux, Presses agronomiques, et édition électronique, <www.dagnelie.be> 397 p.

Dobrescu EM, Susanu M, Oprea R. 2009. Sustainable development concerning with mankind’s climate changes. In: The annals of “Dunarea de Jos University fascicle I Economics and applied informatics 2(15), 827- 838.

Dobrescu EM. 2009. Reducing the polluting Emissions. A source for diminishing the climate changes. Romanian journal of economics 29, 2(38), 180-184.

Duc NT, Silverstein S, Lundmark L, Reyier H, Crill P, Bastviken D. 2013. Automated Flux Chamber for Investigating Gas Flux at Water−Air Interfaces, Environ. Sci. Technol 47, 968-975. DOI: 10.1021/es303848x.

Efole Ewoukem T, Aubin J, Mikolasek O, Corson MS, Tomedi Eyango M, Tchoumboue J, van der Werf HMG, Ombredane D. 2012. Environmental impacts of farms integrating aquaculture and agriculture in Cameroon, Journal of Cleaner Production 28, 208-214.

Efole Ewoukem T. 2011. Optimization biotechnique de la pisciculture en étang dans le cadre du développement durable des Exploitations Familiales Agricoles au Cameroun. Thèse Doct en Halieutique, Agrocampus-Ouest, France 210P.

Fabio Roland, Luciana O, Vidal, Felipe S, Pacheco, Nathan O, Barros, Arcilan Assireu, Jean PHB, Ometto, Andre ´ CP, Cimbleris, Jonathan Cole J. 2010. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquat. Sci 72, 283-293. DOI 10.1007/ s00027-010-0140-0.

FAO. 2014. The State of World Fisheries and Aquaculture. Rome Italy.

Hassouna M, Robin P, Brachet A, Paillat JM, Dollé JB, Faverdin P. 2010. Development and validation of a simplified method to quantify gaseous emissions from cattle buildings. XVII the World Congress of the International Commission of Agricultural and Bio system Engineering (CIGR), Québec City, Canada June, 2010, 10p. http://www.bioeng.ca/index2.php?option=com_sobi2&sobi2Task=dd_download&fid=728&format=html&Itemid=174.

Hobson AM, Frederickson J, Diese NB. 2005. CH4 and N2O fron mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste management 25, 345-352.

Huai C, Qiu’an Z, Changhui P, Ning W, Yanfen W, Xiuqin F, Hong J, Wenhua X, Jie C, Xiangwen D, Guirui Y. 2013. Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate. Global change biology 19(1), 19-32.

Koneswaran, Gowri; Nierenberg, Danielle. 2008. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change, Environmental Health Perspectives; Research Triangle Park116(5), 578-82.

Loir M. and Mollo P. 2008. Le plancton. In: Aquaculture (Ed) Vulbert Paris 237-260.

Loyon L, Guiziou F, Beline F, Peu P. 2007. Gaseous Emissions (NH3, N2O, CH4, and CO2) from aerobic treatment of piggery slurry: Comparison with a coventional storage system. Biosystems ingineering 97, 472-480.

Luth. 2011. Effetdela combinaison de la lombrifiltration et du lagunage à macrophytes sur le recyclage des effluents sur le site d’élevage. Thèse de doctorat en Biologie, Univ Rennes I, 214P.

Ogburn DM, White I.. 2011. Integrating livestock production with crops and saline fish ponds to reduce greenhouse gas emissions, journal of integrative environmental sciences 81, 39-52 DOI: 10.1080/ 1943815X.2010.542755.

Rahman MM, Nagerkelke LAJ, Verdegem MCJ, Wahab MA, Verreh JAJ. 2008. Relationships among water quality, food ressources, fish diet and growth in polyculture ponds: A multivariate approach. Aquaculture 275(1/4), 108-115.

Reynolds WW, Casterlin ME. 1980. The role of temperature in the environment physiology of fishes. In: Environmental physiology of fish. Ali MA (Ed), Plenum Press New York 35, 497-518.

Verdegem MCJ, Bosma RH. 2009. Water withdrawal for brackish and inland aquaculture, and options to produce more fish in ponds with present water use. Water Policy 11 Supplement 1, 52-68.

Verdegem MCJ. 2007. Nutrient balance in ponds. In: Van der Zijp A. J., Verreth J. A. J., Le Quang Tri, Van Mensvoort M. E. F., Bosma R. H., Beveridge M. C. M. (Eds), Fish ponds in farming systems, Wageningen Academic Publishers, Wageningen (Netherlands) 71-75.

Wang ZP, Zeng D, Patrick WH. 1996. Methane emissions from natural wetlands, Environmental Monitoring and Assessment 42(1-2), 143-161 DOI: 10.1007/BF00394047.

William J, Mitsch, Amanda Nahlik, Piotr Wolski, Blanca Bernal, Li Zhang, Lars Ramberg. 2010. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecol Manage 18, 573-586. DOI 10.1007/s11273-009-9164-4.

Wu LC, Wie CB, Yang SS, Chang TH, Pan HW, Chung YC. 2007. Relationship between carbon dioxide/methane emissions and the water quality/sediment characteristics of Taiwan’s a in rivers. Air & Waste Management Assoc 57(3), 319-327.

Yvon-Durocher G, Monto YAJM, Woodward G, Iwan JJ, Mark T. 2011. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms, Global Change Biology 17, 1225–1234, DOI: 10.1111/j.1365-2486.2010.02289.x.