Genetic assessment of Amblyseius eharai and Typhlodromus sp. on Citrus in Vietnam using COI mtDNA barcoding
Paper Details
Genetic assessment of Amblyseius eharai and Typhlodromus sp. on Citrus in Vietnam using COI mtDNA barcoding
Abstract
The study documents recorded presence of Amblyseius eharai (Amitai and Swirskii) and Typhlodromus sp. on citrus plants in Vietnam, expanding the known distribution of these Phytoseiidae mites. Genetic analysis using the COI gene showed that A. eharai from Vietnam is closely related to populations from Asia and Georgia, suggesting a shared lineage with adaptations due to geographic separation. Typhlodromus sp. from Vietnam formed its own clade within the genus, significantly differentiated from Typhlodromus pyri (Scheuten) and Typhlodromus recki (Wainstein), implying a potentially unique or undescribed species adapted to Vietnam’s environment. These findings highlight the importance of molecular markers in Phytoseiidae taxonomy and recommend further studies with additional genetic markers and morphological comparisons to clarify these species’ identities and evolutionary relationships.
Chant DA, McMurtry JA. 2007. Illustrated keys and diagnoses for the genera and sub-genera of the Phytoseiidae of the World. Indira Publishing House, 220p.
Demite PR, Moraes GJ de, McMurtry JA, Denmark HA, Castilho RC. 2018. Phytoseiidae Database.
Demite PR, Moraes GJ, McMurtry JA, Denmark HA, Castilho RC. 2023. Phytoseiidae database. www.lea.esalq.usp.br/phytoseiidae. Accessed 08 November 2023.
El-Banhawy E, Irungu L, Mugo HM. 2009. Survey of predacious phytoseiid mites (Acari: Phytoseiidae) inhabiting coffee trees in Kenya with descriptions of some new species. Acarologia XLIX, 3–4.
Gómez-Martínez MA, Pina T, Aguilar-Fenollosa E, Jaques JA, Hurtado MA. 2020. Tracking mite trophic interactions by multiplex PCR. Pest Management Science 76(2), 597–608.
Guo JF, Li HS, Wang B, Xue XF, Hong X. 2015. DNA barcoding reveals the protogyne and deutogyne of Tegolophus celtis sp. nov. (Acari: Eriophyidae). Experimental and Applied Acarology 67, 393–410. https://doi.org/10.1007/s10493-015-9953-9
Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270(1512), 313–321. DOI: 10.1098/rspb.2002.2218.
Hebert PDN, Ratnasingham S, Dewaard JR. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences 270, S96–S99. https://doi.org/10.1098/rsbl.2003.0025
Ho CC, Shih HT, Chen WH. 2003. Eight phytoseiid mites from the Matsu Islands. Plant Protection Bulletin-Taipei 45(2), 143–154.
Huffaker CB, van de Vrie M, McMurtry JA. 1970. Ecology of tetranychid mites and their natural enemies: a review. I. Tetranychid enemies: their biological characters and the impact of spray practices. Hilgardia 40, 331–390.
Hurtado MA, Ansaloni T, Cros-Arteil S, Jacas JA, Navajas M. 2008. Sequence analysis of the ribosomal internal transcribed spacers region in spider mites (Prostigmata: Tetranychidae) occurring in citrus orchards in Eastern Spain: use for species discrimination. Annals of Applied Biology 153.
Klimov PB, Stolbov VA, Kazakov DV, Filimonova MO, Sheykin SD. 2022. A DNA barcoding and photo-documentation resource of water mites (Acariformes, Hydrachnidia) of Siberia: Accurate species identification for global climate change monitoring programs. Systematic & Applied Acarology 27, 2493–2567. https://doi.org/10.11158/saa.27.12.8
Li JB, Li YX, Sun JT, Xue XF, Xu XN, Hong XY. 2012. COI barcoding as a molecular assay for the identification of phytoseiid mites. Systematic & Applied Acarology 17, 397–406. https://doi.org/10.11158/saa.17.4.8
Lindquist EE, Krantz GW, Walter DE. 2009. Classification. In: Krantz GW, Walter DE, Eds. A Manual of Acarology. Lubbock: Texas Tech University Press.
McMurtry JA, Huffaker CB, van de Vrie M. 1970. Ecology of tetranychid mites and their natural enemies: A review. I. Tetranychid enemies: Their biological characters and the impact of spray practices. Hilgardia 40, 331–390. https://doi.org/10.3733/hilg.v40n11p331
McMurtry JA, Moraes GJ de, Sourassou NF. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic & Applied Acarology 18, 297–320. https://doi.org/10.11158/saa.18.4.1
McMurtry JA, Sourassou NF, Demite PR. 2015. The Phytoseiidae (Acari: Mesostigmata) as biological control agents. In: Carrillo D, Moraes GJ de, Peña J, Eds. Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms. Progress in Biological Control 19, 133–149. https://doi.org/10.1007/978-3-319-15042-0_5
Navajas M, Fenton B. 2000. The application of molecular markers in the study of diversity in Acarology: a review. Experimental and Applied Acarology 24, 751–774. https://doi.org/10.1023/A:1006497906793
Pekas A, Palevsky E, Sumner JC, Perotti MA, Nesvorna M, Hubert J. 2017. Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae). Scientific Reports 7(2), 1–12. https://doi.org/10.1038/s41598-017-00046-6
Pérez-Sayas C, Pina T, Gómez-Martínez MA. 2015. Disentangling mite predator-prey relationships by multiplex PCR. Molecular Ecology Resources 15(6), 1330–1345.
Pérez-Sayas C, Pina T, Sabater-Muñoz B, Gómez-Martínez MA, Jaques JA, Hurtado-Ruiz MA. 2022. DNA barcoding and phylogeny of Acari species based on ITS and COI markers. Journal of Zoological Systematics and Evolutionary Research 22, 1–13. https://doi.org/10.1155/2022/5317995
Queiroz MC, Douin M, Marques de Souza S, Sato E, Tixier M-S. 2021. Molecular variations of the Cytochrome b DNA and protein sequences in Phytoseiulus macropilis Banks (Acari: Phytoseiidae) and P. persimilis (Athias-Henriot) (Acari: Phytoseiidae) reflect population structuration. Experimental and Applied Acarology 84(4), 687–701. https://doi.org/10.1007/s10493-021-00648-w
Saitou N, Nei M. 1987. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution 4, 406–425.
Salomone N, Bernini F. 2002. Mitochondrial DNA variation and phylogeography of Steganacarus on Tenerife (Canary Islands). In: Bernini F, Nannelli R, Nuzzaci G, de Lillo E, Eds. Acarid Phylogeny and Evolution: Adaptation in Mites and Ticks, 35–39. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-0611-7_4
Seeman O, Nahrung H. 2018. In short- or long-term relationships, size does matter: body size patterns in the Mesostigmata (Acari: Parasitiformes). International Journal of Acarology 44, 1–7. https://doi.org/10.1080/01647954.2018.1530299
Siddiqui JA, Chen ZL, Li Q, Deng J, Lin XL, Huang XL. 2019. DNA barcoding of aphid-associated ants (Hymenoptera, Formicidae) in a subtropical area of southern China. ZooKeys 879, 117–136. https://doi.org/10.3897/zookeys.879.29705
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28, 2731–2739. http://dx.doi.org/10.1093/molbev/msr121
Tixier MS, Dos Santos VV, Martial D, Duso C, Kreiter S. 2017. Great molecular variation within the species Phytoseius finitimus (Acari: Phytoseiidae): implications for diagnosis decisions within the mite family Phytoseiidae. Acarologia 57(3), 493–515. https://doi.org/10.24349/acarologia/20174168
Tixier M-S, Douin M, Oliva R, Gonzalez L, Pount B, Kreiter S. 2020. Distribution and biological features of the species Typhlodromus (Anthoseius) recki (Acari: Phytoseiidae) on Tetranychus urticae, T. evansi (Acari: Tetranychidae) and Aculops lycopersici (Acari: Eriophyidae). Acarologia 60(4), 684–697. https://doi.org/10.24349/acarologia/20204396
Tixier M-S, Guichou S, Kreiter S. 2008. Morphological variation in the biological control agent Neoseiulus californicus (McGregor) (Acari: Phytoseiidae): consequences for diagnostic reliability and synonymies. Invertebrate Systematics 22, 453–469. https://doi.org/10.1071/IS07052
Tixier MS, Hernandes FA, Guichou S, Kreiter S. 2011a. The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public GenBank® database. Invertebrate Systematics 25, 389–406. https://doi.org/10.1071/IS11013
Tixier MS, Kreiter S, Barbar Z, Ragusa S, Cheval B. 2006a. Status of two cryptic species, Typhlodromus exhilaratus Ragusa and Typhlodromus phialatus Athias-Henriot (Acari: Phytoseiidae): consequences for taxonomy. Zoologica Scripta 35, 115–122. https://doi.org/10.1111/j.1463-6409.2006.00222.x
Tixier MS, Kreiter S, Bourgeois T, Cheval B. 2007. Factors affecting density and diversity of Phytoseiid mite communities in two arboreta in the South of France. Journal of the Egyptian Society of Parasitology 37(2), 493–510.
Tixier MS, Kreiter S, Croft BA, Cheval B. 2008. Kampimodromus aberrans (Acari: Phytoseiidae) from the USA: morphological and molecular assessment of its density. Bulletin of Entomological Research 98(2), 125–134. https://doi.org/10.1017/S0007485307005457
Tixier M-S, Kreiter S, Douin M, Moraes GJ. 2012a. Rates of description of Phytoseiidae mite species (Acari: Mesostigmata): space, time and body size variations. Biodiversity and Conservation 21, 993–1013. https://doi.org/10.1007/s10531-012-0235-0
Tixier MS, Kreiter S, Ferragut F, Cheval B. 2006b. The suspected synonymy of Kampimodromus hmiminai and Kampimodromus adrianae (Acari: Phytoseiidae): morphological and molecular investigations. Canadian Journal of Zoology 84(8), 1216–1222. https://doi.org/10.1139/z06-108
Tixier MS, Okassa M, Kreiter S. 2011b. An integrative morphological and molecular diagnostic for Typhlodromus pyri (Scheuten) (Acari: Phytoseiidae). Zoologica Scripta 41(1), 68–78. https://doi.org/10.1111/j.1463-6409.2011.00504.x
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 360, 1847–1857. https://doi.org/10.1098/rstb.2005.1716
Zemek R, Prenerova E. 1997. Powdery mildew (Ascomycotina: Erysiphales) – an alternative food for the predatory mite Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Experimental & Applied Acarology 21, 405–414. https://doi.org/10.1023/A:1018427812075
Nguyen T. P. Thao, Le T. Long, Nguyen T. Thuy (2024), Genetic assessment of Amblyseius eharai and Typhlodromus sp. on Citrus in Vietnam using COI mtDNA barcoding; IJB, V25, N5, November, P145-154
https://innspub.net/genetic-assessment-of-amblyseius-eharai-and-typhlodromus-sp-on-citrus-in-vietnam-using-coi-mtdna-barcoding/
Copyright © 2024
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0