Genetic population structure of West Nile Virus vector Mosquitoes

Paper Details

Research Paper 09/05/2023
Views (435) Download (43)
current_issue_feature_image
publication_file

Genetic population structure of West Nile Virus vector Mosquitoes

Pedro M. Gutierrez Jr.
J. Bio. Env. Sci.22( 5), 25-37, May 2023.
Certificate: JBES 2023 [Generate Certificate]

Abstract

Culex mosquitoes are considered as one of the most important vectors of West Nile virus (WNV) and other arboviruses detected in at least 34 species of mosquitoes in the United States. This review paper summarizes previous studies on the genetic diversity of West Nile Virus vectors and focuses on population structure. In addition, it also attempt to review significant information about molecular markers used in investigating the geographical and temporal patterns of genetic diversity in Culex mosquitoes. Genetically independent markers are the best strategies for the correct identification of population demes, gene flow and species relationships when working with Culex mosquitoes. The apparently low or restricted gene flow of mosquito vectors may be due to the large geographic distance or isolation by distance and physical barriers to dispersal may explain the spatial pattern of current genetic diversity in some Culex species. On the other hand, other studies where gene flow is evident, the recognition of the existence of gene flow between populations provides useful information on their potential, and possibly of the infectious agent they transmit. The genetic structure observed in this study may lead to the best understanding of their genetic variations for the development of effective strategies for vector control.

VIEWS 73

Anderson JF, Andreadis TG, Vossbrinck C, Tirrell S, Wakem EM, French RA, Garmendia AE Van Kruiningen HJ.1999. Isolation of West Nile virus from mosquitoes, crows, and a Cooper’s hawk in Connecticut. Science 286, 2331-2333.

Barr AR. 1957. The distribution of Culex p. pipiens and Culex p. quinquefasciatus in North America. American Journal of Tropical Medicine 6, 153-165.

Becker N, Petric D, Zgomba M, Boase C, Madon M. 2010. Mosquitoes and their control. Heidelberg: Springer. 577p.

Chen B, Harbach R, Bultin R. 2004. Genetic variation and population structure of the mosquito Anopheles jeyporiensis in southern China. Molecular Ecology 13, 3051- 3056.

Cheng M, Hacker C, Pryor S, Ferrel R, Kitto G. 1982. The ecological genetics of Culex pipiens complex in North America pp. 581-627.

Cui F, Qiao C, Shen B, Marquine M, Weill M, Raymond R. 2007. Genetic differentiation of Culex pipiens (Diptera: Culicidae) in China. Bulletin in Entomological Research 97, 291-297.

Delatte H, Gimonneau G, Triboire A, Fontenille D. 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikunguna and dengue in the Indian Ocean. Journal of Medical Entomology 46, 33 – 41

Diaz-Badillo A, Bolling B, Perez-Ramirez G, Moore J, Martinez-Munoz JAA, Padilla-Viveros J, Camacho- Nuez M, Diaz-Perez BJ, Beaty J, Munoz M. 2011. The distribution of potential West Nile virus vectors, Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae), in Mexico City. Parasit. Vectors 4, 70.

Dixit J, Srivastava H, Singh O, Saksena D, Das A. 2011. Multilocus nuclear DNA markers and genetic parameters in an Indian Anopheles minimus population. Infection, Genetics and Evolution 11, 572-579.

Edillo F, Kiszewski A, Manjourides J, Pagano M, Hutchinson M, Kyle A, Arias J, Gaines D, Lampman R, Novak R. 2009. Effects of latitude and longitude on the population structure of Culex pipiens s.l., vectors of West Nile virus in North America. American Journal of Tropical Medicine and Hygiene 81(5), 842-848

Epp Y, Waldner C, Berke O. 2009. Predicting geographical human risk of West Nile Virus—Saskatchewan. Canadian Journal Public Health 100, 344-349.

Estoup A, Angers B. 1998. Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. In: Advances in Molecular Ecology. Carvalho G.R. (ed.). IOS Press, pp. 55-86.

Failloux AB, Raymond M, Ung A, Chevillon C, Pasteur N. 1997. Genetic differentiation associated with commercial traffic in the Polynesian mosquito, Aedes polynesiensis Marks 1951. Biological Journal of the Linnean Society 60, 107-118.

Farajollahi A, Fonseca DM, Kramer LD, Kilpatrick AM. 2011. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection, Genetics Evolution 11, 1577-1585.

Foley D, Torres E. 2006. Population structure of an island malaria vector. Medical and Veterinary Entomology 20, 393-401.

Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC. 2006. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. American Journal of Tropical Medicine and Hygiene 74, 284-289.

Ghosh D, Manson SM, McMaster RB. 2010. Delineating West Nile Virus transmission cycles at various scales: The nearest neighbor distance-time model. Cartography and Geographic Information Science 37, 149-163.

Harbach RE. 2011. Classification within the cosmopolitan genus Culex (Diptera: Culicidae): The foundation for molecular systematics and phylogenetic research. Acta Tropica 120, 1-14

Hardy JL, Meyer RP, Presser SB, Milby MM. 1990. Temporal variations in the susceptibility of a semi-isolated population of Culex tarsalis to peroral infection with western equine encephalomyelitis and St. Louis encephalitis viruses. American Journal of Tropical Medicine Hygiene 42, 500- 511.

Huang S, Molaei G, Andreadis TG. 2008. Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the northeastern United States by using microsatellite analysis. American Journal of Tropical Medicine Hygiene 79, 518 – 527.

Hurst GDD, Jiggins FM. 2005. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of Biological Sciences 272, 1525-1534.

Jacob B, Lampman R, Ward M, Muturi E, Morris J, Caamano E, Novak R. 2009. Geospatial variability in the egg raft distribution and abundance of Culex pipiens and Culex restuans in Urbana-Champaign, Illinois. International. Journal Remote Sensing 30, 2005-2019.

Kanojia PC, Paingankar MS, Patil AA, Gokhale MD, Deobagkar DN. 2010. Morphometric and allozyme variation in Culex tritaeniorhynchus mosquito populations from India. Journal of Insect Science 10, 138

Kilpatrick AM, Fonseca DM, Ebel GD, Reddy MR, Kramer LD. 2010. Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. American Journal of Tropical Medicine Hygiene 83, 607-613.

Kilpatrick AM, Gluzberg Y, Burgett J, Daszak P. 2004. A quantitative risk assessment of the pathways by which West Nile virus could reach Hawaii. Ecohealth 1, 205-209.

Knight KL. 1978. Supplement to a catalog of the mosquitoes of the world (Diptera, Culicidae). Thomas Say Foundation 6.

Laurence BR, Pickett JA. 1985. An oviposition attractant pheromone in Culex quinquefasciatus Say (Diptera: Culicidae). Bulletin of Entomological Research 75(2), 283-290.

Lenormand T, Raymond M. 1998. Resistance management: the stable zone strategy. Proceedings of the Royal Society of London, Series B 265, 1-6.

Linton Y, Smith L, Koliopoulos G, Samanidou-Voyadjoglou A, Zounos A, Harbach R. 2003. Morphological and molecular characterization of Anopheles (Anopheles) maculipennis Meigen, type species of the genus and nominotypical member of the Maculipennis Complex. Systematics Entomology 28, 39-55.

Low V, Lim P, Chen C, Lim Y, Tan T. 2014. Mitochondrial DNA analyses reveal low genetic diversity in Culex quinquefasciatus from residential areas in Malaysia. Medical and veterinary entomology 28(2), 157-168.

Lowe A, Harris S, Ashton P. 2004. Ecological Genetics: Design, Analysis, and Application, 1st edn. Blackwell Publishing: Oxford, UK.

Luikart G, England P, Tallmon D, Jordan S, Taberlet P. 2003. The power and promise of population genomics: from genotyping to genome typing. Nature Reviews Genetics 4, 981-994.

Mattingly PF, Rozeboom LE, Knight KL, Laven H, Drummond FH, Christophers SR, Shute PG. 1951. The Culex pipiens complex. Transactions of the Royal Entomological Society of London 102, 331-382.

Morais, Sirlei Antunes, Almeida, Fábio de, Suesdek, Lincoln, & Marrelli, Mauro Toledo. 2012. Low genetic diversity in Wolbachia-Infected Culex quinquefasciatus (Diptera: Culicidae) from Brazil and Argentina. Revista do Instituto de Medicina Tropical de São Paulo 54(6), 325-329

Moreno M, Marinotti O, Krzywinski J, Tadei W, James A, Achee N, Conn J. 2010. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malaria Journal 9, 127.

Morin PA, Luikart G, Wayne R. 2004. SNPs in ecology, evolution and conservation. TREE 19, 208-216.

Nayar JK, Knight J, Munstermann L. 2003. Temporal and geographic genetic variation in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Florida. Journa. Medical Entomology 40, 882-889

Nolan M, Schuermann J, Murray K. 2013. West Nile virus Infection among Humans, Texas, USA, 2002-2011. Emerging Infectious Diseases 19, 137-139.

Pfeiler E, Flores-Lopez CA, Mada-Velez JG, Escalante-Verdugo J, Markow TA. 2013. Genetic diversity and population genetics of mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America. Science World Journal. 724609.

Rainham D. 2004. Ecological complexity and West Nile virus: Perspectives on improving public health response. Canadian Journal Public Health 96, 37-40.

Reidenbach K, Cook S, Bertone M, Harbach R, Wiegmann B, Besansky N. 2009. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. Malarian Journal 9, 298.

Reisen WK, Hardy JL, Presser SB, Chiles RE. 1996. Seasonal variation in the vector competence of Culex tarsalis (Diptera: Culicidae) from the Coachella valley of California for western equine encephalomyelitis and St. Louis encephalitis viruses. Journal Medical Entomology 33, 433 – 437.

Reisen WK, Reeves WC, Hardy J, Milby MM. 1991. Effects of climatological change on the population dynamics and vector competence of mosquito vectors in California. Proceedings of the California Mosquito and Vector Control Association 59, 14 – 20.

Rogers DJ, Randolph SE, 2006. Climate change and vector-borne diseases. Advance Parasitology 62, 345 – 381.

Rueda LM, Patel KJ, Axtell RC, Stinner RE. 1990. Temperature dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera, Culicidae). Journal Medical Entomology 27, 892 – 898.

Sallum M, Foster P, Li C, Sthiprasasna R, Wilkerson R. 2007. Phylogeny of the Leucosphyrus Group of Anopheles (Cellia) (Diptera: Culicidae) based on mitochondrial gene sequences. Annals of the Entomological Society of America 100, 27-35.

Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R. 2010. Adaptation genomics: the next generation. Trends in Ecology & Evolution 25, 705-712.

Subra R. 1981. Biology and control of Culex pipiens quinquefasciatus Say, 1823 (Diptera, Culicidae) with special reference to Africa. Insect Science and its Application 1(4), 319-338.

Thorpe JP, Solé-Cava AM. 1994. The use of allozyme electrophoresis in invertebrate systematics. Zoologica Scripta 23, 3-18.

Vinogradova E. 2000. Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Sofia, Moscow. 250 p.

Wahlund S. 1928: Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Verer bungslehre ausbetrachtet. Hereditas 11, 65-106.

Wandeler P, Hoeck P, Keller L. 2007. Back to the future: museum specimens in population genetics. Trends Ecological Evolution 22, 634-642.

Weir B, Cockerham С. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.

Weitzel T, Collado A, Jo¨st A, Pietsch K, Storch V. 2009. Genetic differentiation of populations within the Culex pipiens complex and phylogeny of related species. Journal American Mosquito Control Association 25, 6-17.

Werblow A, Klimpel S, Bolius S, Dorresteijn AWC, Sauer J, Melaun C. 2014. Population structure and distribution patterns of the sibling mosquito species Culex pipiens and Culex torrentium (Diptera:Culicidae) reveal different evolutionary paths. PLoS One 9, 1-14

Wilke AB, Vidal PO, Suesdek L, Marrelli MT. 2014. Population genetics of neotropical Culex quinquefasciatus (Diptera:Culicidae). Parasites & Vectors 7, 468-476.

Wright S. 1951. The genetical structure of populations. Annals of Eugenics 15, 323-354.