Welcome to International Network for Natural Sciences | INNSpub

Genetic variation and differentiation of wild stocks of critically endangered Puntius sarana (Hamilton) and their F1 crossbreed through allozyme electrophoresis

Research Paper | November 1, 2015

| Download 3

Imran Parvez, Mohammad Ashraful Alam, A.K.M. Rohul Amin, Mohammad Rashidul Islam, Mohammad Mukhlesur Rahman Khan

Key Words:

Int. J. Biosci.7( 5), 47-57, November 2015

DOI: http://dx.doi.org/10.12692/ijb/7.5.47-57


IJB 2015 [Generate Certificate]


The lower genetic variation and differentiation in wild parental stocks of critically endangered Puntius sarana and slight genetic improvement in their F1 crossbreed were inferred by horizontal starch gel electrophoresis with nine allozyme markers. Out of fifteen loci, four loci (EST-1*, GPI-2*, G3PDH-2*, PGM*) were polymorphic in F1 crossbreed progeny and in maternal parent, and only two loci (EST-1*, G3PDH-2*) in paternal parent. A rare allele *c at locus EST-1*, the highest mean number of polymorphic loci (26.6), mean number of alleles per locus (1.33) and observed heterozygosity (0.066) were observed in F1 generation. The higher fixation index (FIS) value indicated heterozygote deficiency in parental stocks, and the negative FIS value at locus GPI-2* and PGM* indicated excess of heterozygote in F1 crossbreed progeny. The overall genetic differentiation (FST), gene flow (Nm), maximum genetic distance (D) were 0.0690, 3.3755 and 0.0183 respectively, showed very low genetic differentiation among them. Crossbreeding of geographically isolated endemic wild stocks of critically endangered P. sarana could be potential for the revival of the species from the being extinction.


Copyright © 2015
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Genetic variation and differentiation of wild stocks of critically endangered Puntius sarana (Hamilton) and their F1 crossbreed through allozyme electrophoresis

Akhteruzzaman M, Kohinoor AHM, Shah MS. 1992. Observations on the induced breeding of Puntius sarana (Ham). Bangladesh Journal of Zoology 20(2), 291-295.

Alam MA, Akanda MSH, Khan MMR, Alam MS. 2002. Comparison of genetic variability between a hatchery and a river population of rohu (Labeo rohita) by allozyme electrophoresis. Pakistan Journal of Biological Science 5(9), 959-961. http://dx.doi.org/10.3923/pjbs.2002.959.961

Allendorf FW, Utter FM. 1979. Population genetics. In W. S. Hoar and D. J. Randall (Eds.). Fish Physiology Academic Press, New York, 8.

Allendorf FW, Ryman N. 1986. Genetic management of hatchery stocks. In: N. Ryman and F. Utter (eds.), Population Genetics and Fishery Management. Washington Sea Grant Program, University of Washington Press, Seattle, 141-158.

Appleyard SA, Grewe PM, Innes BH, Ward RD. 2001.  Population  Structure  of  yellowfin  tuna (Thunnus albacares) in the Western Pacific ocean, inferred from microsatellite loci. Marine Biology 139, 383-393. http://dx.doi.org/10.1007/s002270100578

Appleyard SA, Mather PB. 2002. Genetic characterization of cultured Tilapia in Fiji using allozymes and RAPD. Asian Fish Science 15, 249-264.

Chakraborty BK, Miah MI, Habib MAB, Mirza MJA. 2003. Embryonic and larval development of indigenous sarpunti, Puntius sarana (Hamilton). Bangladesh Jounal Fisheries 25(1-2), 135-147.

Chakraborty BK, Miah MI, Habib MAB. 2002. Induction of Spawning in local sarpunti (Puntius sarana). Bangladesh Journal of Training and Development 15(1&2), 239-243.

Chakraborty BK, Miah MI, Mirza MJA, Habib MAB. 2003. Rearing and nursing of local sarpunti, Puntius sarana (Hamilton) at different stocking densities. Pakistan Journal of Biological Science 6(9), 797-800. http://dx.doi.org/10.3923/pjbs.2003.797.800

Chakraborty BK, Miah MI, Mirza MJA, Habib MAB. 2005. Growth, Yeild and Returns to Puntius sarana (Hamilton) Sarpunti, in Bangladesh under Semi intensive Aquaculture. Asian Fish Science 18, 307-322.

Chauhan T, Lal KK, Mohindra V, Sigh RK, Punia P, Gopalkrishnan A. 2007. Evaluating genetic differentiation in wild populations of the Indian major carp, Cirrhinus mrigala(Hamilton-Buchanan,1882): Evidence from allozyme and microsatellite markers. Aquaculture 269, 135-149.

Doi A. 1997. A review of taxonomic studies of cypriniform fishes in Southeast Asia. Japanese Journal of Ichthyology 44(1), 1-33.

Engelbrecht GD, Van-der- Bank FH, Mulder PFS. 1997. Allozyme variation in Schilbe intermedius Rueppel, 1932 (Pisces: Siluriformes) from two localities in Limpopo River system, South Africa. Comparative Biochemistry and Physioliogy 117B(2), 179- 184.

Gupta KG. 1980. Report on the result of injury into the Fisheries of Bengal, Calcutta. India.

Hamilton F. 1822. An account of the fishes found in the river Ganges and its branches. Archibald Constable and Company. Edinburgh, 405.

Haniffa MA, Nagarajan M, Gopalakrishnan A, Musammilu KK. 2007. Allozyme variation in a threatened freshwater fish, Spotted Murell (Channa punctus) in a South Indian river system. Biochemical Genetics 45(3/4), 363-374. http://dx.doi.org/10.1007/s10528-007-9080-3

Hartl DL, Clark AG. 1997. Principles of Population Genetics, Sinauer Associates, Inc. Sunderland, MA, 542.

Hossain MY, Ohtomi J, Ahmed ZF. 2009. Morphometric, Meristic Characteristics and Conservation of the Threatened Fish, Puntius sarana (Hamilton, 1822) (Cyprinidae) in the Ganges River, Northwestern Bangladesh. Turkish Journal of Fisheries and Aquatic Sciences 9, 223-225. http://dx.doi.org/10.4194/trjfas.2009.0215

Islam MS, Alam MS. 2004. Randomly amplified polymorphic DNA analysis of four different populations of the Indian major carp L. rohita (Hamilton). Journal of Applied Ichthyology, 20, 407-416. http://dx.doi.org/10.1111/j.1439-0426.2004.00588.x

IUCN. 2000. Red book of threatened fishes of Bangladesh. Islam MA, Ameen M, Nishat A, (Eds.). The World Conservation Union, Dhaka, Bangladesh, 160.

Khan MR, Arai K. 2000. Allozyme variation and genetic differentiation in the loach Misgurnus anguillicaudatus. Fisheries Science 66, 211-222. http://dx.doi.org/10.1046/j.14442906.2000.00037.x

Kohlmann K, Petra K. 1999. Genetic variability of German and foreign common carp (Cyprinus carpio L.) populations. Aquaculture 173, 435-445. http://dx.doi.org/10.1016/S0044-8486(98)00474-8

Lal KK, Srivastava SK, Mukherjee A, Mohindra V, Prakash S, Sinha M, Ponniah AG. 2004. Genetic variation in Hilsha shad (Tenualosa ilisha) population in River Ganges. Indian Journal of Fisheries 51, 33-42.

Leary RF, Booke HE. 1990. Starch gel electrophoresis and species distinctions. In: C.B. Schreck and P.B. Moyle (eds.), Methods for Fish Biology. American Fisheries Society, Bathesda, Maryland, USA. 141-170.

Leberg PL. 1990. Influence of genetic variability on population growth: Implication for conservation. Journal of Fish Biology 37, 193-195. http://dx.doi.org/10.1111/j.10958649.1990.tb05036.x

Leesa-Nga-SN, Siraj-Sitishshapor, Daud-Sitikhalijah, Sodsuk-PK, Tan-SoonGuan, Soduk-s, Sa-nga-Leesa-Nga,  Siraj-SS,  Daud-SK, Tan-SG, Srirat-Sodsuk. 2000. Biochemical polymorphism in yellow catfish, Mystus nemurus (C&V), from Thailand. Biochemical Genetics 38(3-4), 77-85. http://dx.doi.org/10.1023/A:1002763729872

Lester LJ, Pante MJR. 1992. Genetics of Penaeus species. In Bast, A. W., and Lester, J (eds) Marine shrimp culture: Principles and practices, Elsevier Science publishers, Amsterdam, 29-52.

Menon AGK. 1999. Check list – fresh water fishes of India. Records of the Zoological Survey of India, Misc. Publ, Occas. Pap. No. 175, 366.

Mitton JB, Koeh RK. 1975. Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus. Genetics 79, 97-111.

Nei M. 1972. Genetic distance between populations. The American Naturlist 106, 283-292.

Nevo E, Beiles A, Ben-Shlomo R. 1984. The evolutionary significance of genetic diversity, ecological, demographic and life history correlates. Evolutionary dynamics of genetic diversity. Lecture Notes Biomath 53, 13-213.

Nyman  OL,  Shaw  DH.  1971.  Molecular  weight heterogeneity  of  serum  sterases  in  four  species  of salmonid fishes. Comparative Biochemistry and Physiology 40, 563-566. http://dx.doi.org/10.1016/0305-0491(71)90240-9

Parvez I, Khan MMR, Rahman SMZ, Alam MA. 2006. Present status and future potential of the gene pool of local sarpunti, Puntius sarana (Hamilton), Journal of Bangladesh Agricultural University 4(2), 319-324.

Parvez I, Khan MMR. 2005. Effects of feed on larval rearing of local sarpunti (Puntius sarana, Hamilton) in laboratory condition. Bangladesh Journal of Fisheries Research 29(1&2), 63-68.

Parvez I, Kibria ASM, Hassan MM, Aktar N. 2012. Distribution of the riverine fish in Dinajpur of Bangladesh. The 5th Fisheries Conference and Research Fair 2012, January 18-19, 2012 Bangladesh Fisheries Research Forum, BARC Auditorium, Dhaka, Bangladesh. 126.

Parvez I, Khan MMR, Rahman SMZ, Fatema K. 2010. Breeding between two wild stocks of Puntius sarana (Hamilton) is potential for higher growth and survival. Bangladesh Journal of Zoology 38(1), 51-59.

Peakall R, Smouse PE. 2001. GeneAlEx V5: Genetic Analysis in Excel, Population genetic software for teaching and research. Australian National University, Canberra, Australia. http://www.anu.edu.au./BoZo/GenAiex/

Pethiyagoda R. 1991. Freshwater fishes of Sri Lanka. The Wildlife Heritage Trust of Sri Lanka, Colombo. 362.

Ponniah AG. 1989. Functional relationship between biochemical genetic polymorphisms and physiological variation in aquatic animals. In Das, P., and Jhingram, V. G. (eds), Fish Genetics in India. Today and Tomorrow Printers and Publishers, New Delhi, 101-114.

Rahman AKA. 1989. Freshwater fishes of Bangladesh, Zoological Society of Bangladesh. Department of Zoology, University of Dhaka, 364.

Salini JP, Milton DA, Rahman MJ, Hussain MG. 2004.  Allozyme  and  morphological  variation throughout the geographic range of the tropical shad, hilsa Tenualosa ilisha. Fisheries Research 66(1), 53-69. http://dx.doi.org/10.1016/S0165-7836(03)00124-3

Shaklee JB, Phelps SR, Salini J. 1990. Analysis of fish stock structure and mixed stock fisheries by the electrophoretic characterization of allelic isozyme. In Whitmore, D. H.(ed.) Electrophoretic and Isoelectric Forcussing Techniques in Fisheries Management. CRC Press, Boca Raton, 181-184.

Shaw CR, Prasad R. 1970. Starch Gel Electrophoresis of Enzymes: A Compilation of Recipes. Biochemical Genetics 4(2), 297-320. http://dx.doi.org/10.1007/BF00485780

Shrestha J. 1994. Fishes, fishing implements and methods of Nepal. Smt. M.D. Gupta, Lalitpur Colony, Lashkar (Gwalior), India, 150.

Sidthimunka A. 1970. A report on the fisheries survey of the Mekong River in the vicinity of the Pa Mong Dam site. Inland Fisheries Division, Department of Fisheries, Bangkok, Thailand, 75.

Siegismund HR. 1995. G-STAT, Version 3.1. Genetical statistical programs for the analysis of population data. Botanical Institute, University of Copenhagen, Denmark.

Singh RK, Chauhan T, Mohindra V, Kapoor D, Punia P, Lal KK. 2004. Identification of allozyme markers for population structure analysis in Cirrhinus mrigala (Hamilton Buchanan, 1882). Indian Journal of Fisheries 51(1), 117-122.

Steenkemp MKJH, Engelbrecht GD, Mulder PFS. 2001. Allozyme variation in a johnston’s topminnow, Aplocheilichthys johnstoni, populations from the Zambezi river system. Water SA. 27, 53-55. http://dx.doi.org/10.4314/wsa.v27i1.5010

Talwar PK. Jhingran AG. 1991. Inland fishes of India and adjacent countries. Volume1. A.A. Balkema, Rotterdam, 541.

Ward  RD,  Jorstad  KE,  Maguire  GB.  2003. Microsatellite diversity in rainbow trout, Oncorhynchus mykiss introduced to Western Australia. Aquaculture 219, 169-179. http://dx.doi.org/10.1016/S0044-8486(02)00569-0

Yeh FC, Yang RC, Boyle T. 1999. PopGene Version 1.31: Microsoft Windows based freeware for population genetics analysis. University of Alberta and Centre for International Forestry Research, Canada. http://www.ualberta.ca/_fyeh.