Welcome to International Network for Natural Sciences | INNSpub

Genotype by environment interaction and stability for grain yield in corn (Zea mays L)

Research Paper | October 1, 2018

| Download 7

Riyadh Jabbar Al-Maliki

Key Words:

Int. J. Biosci.13( 4), 357-362, October 2018

DOI: http://dx.doi.org/10.12692/ijb/13.4.357-362


IJB 2018 [Generate Certificate]


This study was carried out with the aim of identifying eight inbreed line of maize through season 2016 in three different environmental location (Wasit, Diwaniyah and Nasiriyah) to determine the most stable inbreed. The study involved planting this breeds (Inp-6, Pio-17, Syn-9, Zm-17, Pio-3, S-10, MGW-1 and Ast-B). Using RCBD design to three replicate. The results showed significant differences between each of the inbreeds and location approved for the studied traits (ear length and number of rows in ear and the number of grains in the row and the grain yield of the plant). The result of the stability analysis, four of them (Inp-6, Pio-17, S-10, and Ast-B) showed high averages relative to the general average and the slope coefficients were to one within the two confidence intervals. It is the best in adapting to all environmental conditions. Inp-6 inbreed is superior to the ear length, which is 19.19cm in length, while the Ast-B is superior in both rows of ear and plant yield, with 23.35 rows and 322.83g respectively. While inbreedInp-6 and Pio-17 in the number of grains per row were 15.41 seed per row and some inbreed showed that It is adapted to the new environmental conditions as in the inbreed (Ast-B, S-10 of Australian origin and Pio-17 Yugoslav origin, which exceeded the individual grain yield of the localin breeds at 322.83, 312.87 and 284.57g / plant). The ast–B inbreed highest components and adapted to the conditions of the studied environments.


Copyright © 2018
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Genotype by environment interaction and stability for grain yield in corn (Zea mays L)

Badu-Apraku B, Abamu FJ, Menkir A, Fakorade MAB, Obeng-Antwi K. 2003. Genotype by environment interactions in the regional early maize variety trials in West and Central Africa. Maydica 48, 93-104.

Comstock RE, Moll RH. 1963. Genotype-Environment Interactions, Symposium on Statistical Genetics and Plant Breeding, NASNRC Publication 982, pp. 164-196.

Demisie D. 2016. Genotype by Environment Interaction and Yield Stability Analysis of Ethiopian Bread Wheat Using Mixed Model. Haramaya University, Haramaya. pp. 78.

Eberhart SA, Russel WA. 1966. Stability parameters for comparing varieties. Crop Sci 6, 36-40.

Elsahookie MM. 1996. Applications on stability analysis of genotypes.The Iraqi Jour. for Agri. Sci   27, 11-20.

Finlay KW, Wilkinson GN. 1963. The analysis of adaptation in a plant breeding programme Australian. J. Agric. Res 14, 742-754.

Francis TR, Kannenberg LW. 1978. Genotype grouping and stability measurement. Can. J. Plant Sci 58, 1029-1034.

Kang MS. 1988. A rank – Sum Method For Selecting high yielding Stable Corn n.genotypes Cereal Res. Comm 16, 113-115.

Knight R. 1970. The measurement and interpretation of genotype environment interactions. Euphytica 19, 225-35.

Lin CS. Binns MR, Lefkovitch L. 1986. Stability analysis: Where do weStand Crop Sci 26, 894-900.

Perkins JM, Jinks JL. 1968. Environmental and genotype environmental components of variability. III. Multiple lines and crosses. Heredity 23, 339-356.

Shukla GK. 1972. Some statistical aspects of partitioning genotype-environmentcomponents of variability. Heredity 29, 237-45.

Surma M, Adamski T, Banaszak Z, Kaczmarek Z, Kuczyńska H, Tugowska MB, Obuchowskił W, Salmanowicz B, Krystkowiak K. 2015. Effect of genotype, environment and their interaction on quality parameters of wheat breeding lines of diverse grain hardness.Plant Prod. Sci. 15(3), 192-203.