Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | February 1, 2019

| Download

Groundwater quality and its suitability for drinking and agricultural use in Tebessa watershed (Northeastern of Algeria)

Bouchagoura Louiza, Djidel Mohamed, Medjani Fethi

Key Words:

J. Bio. Env. Sci.14(2), 138-148, February 2019


JBES 2019 [Generate Certificate]


The study of the water quality in the alluvial aquifer of Tebessa basin is necessary to perform an assessment of the hydrogeochemical quality, their uses and the origin of their pollutant. Thus, a thorough understanding of aquifer behaviour and water mineralization origin using geochemical tools can lead to relevant information regarding mineralisation processes, groundwater chemistry, and their uses. The results show that groundwater is saline with a dominant chemical facies “Magnesium Sulfate”. The relationships established between the concentrations in major elements allowed a better characterization of the waters of the studied aquifer, in particular the mode of acquisition of the mineralization. The latter is mainly caused by the evaporitic minerals (gypsum, anhydrite and halite) which are under-saturated and can dissolve further, thus causing the increase of the overall concentration. While carbonate minerals are supersaturated and tend to precipitate. The evolution of nitrate levels shows a deterioration of the natural state of the groundwater by a pollution linked to the agricultural activity by the excessive use of the fertilizers. Despite this chemical diversity, water is generally suitable for human consumption, with the exception of wells located near farms. Also over than 50% of samples are suitable for irrigation use.


Copyright © 2019
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Groundwater quality and its suitability for drinking and agricultural use in Tebessa watershed (Northeastern of Algeria)

Alrajhi A, Beecham S, Bolan NS, Hassanli A. 2015. Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production. Agric Water Manag 161, 127-135. DOI: 10.1016 /j.agwat.2015.07.013

Barbiéro L, Vallès V, Cheverry C. 2004. Some observations with respect to sodicity hazard of irrigation waters? Reply to JW Van Hoorn. Agricultural Water Management 68, 177-184.

Barbiero L. 1994. Les sols alcalinisés sur socle dans la vallée du fleuve Niger – Origines de l’alcalinisation et évolution des sols sous irrigation. Th. Doct. Ensar, 210p.

Bles JL, Fleury JJ. 1970. Carte géologique de l’Algérie au 1/50000, feuille n°178, Morsott, avec notice explicative détaillée. Service de cartes Géologique et Sonatrach, Division d’hydrocarbure. Direction des explorations, Alger.

Dar FA, Perrin J, Ahmed S, Narayana AC, Riotte J. 2014. Hydrogeochemical characteristics of Karst Aquifer from a semi-arid region of southern India and impact of rainfall recharge on groundwater chemistry; Arabian J. Geosci 8, 2739-2750.

Drever JI. 1997. The Geochemistry of Natural Water: Surface and Groundwater Environments. 3rd Edition, Prentice Hall, New Jersey.

Drias T. 2013. Hydrogéologie du bassin versant de l’oued Ksob (Tébessa). Vulnérabilité et protection de la ressource. Thèse de Doctorat en science. USTHB. Alger. 135P.

Droubi A. 1976. Géochimie des sels et des solutions concentrées par évaporation – Modèle thermodynamique de simulation – Application aux sols salés du Tchad. Mémoire des Sciences Géologiques 46, 177 p.

Fehdi Ch, Rouabhia Aek, Baali F. 2009. The Hydrogeochemical characterization of Morsott-El Aouinet aquifer, Northeastern Algeria. Environmental Geology. Springer, Heidelberg. Environ Geol 58, 1611. DOI: 10.1007/s00254-008-1667-4

GAC JY. 1980. Géochimie du bassin du lac Tchad : Bilan de l’altération de l’érosion et de la sédimentation. Paris : ORSTOM (123), 252 p.

Ghrieb L. 2010. Impact de la minéralisation des formations triasiques sur la qualité des eaux et du sol en zone semi-aride-cas de la plaine Bekkharia-Tébessa (Extrême Nord-est Algérien). Thèse de Doctorat, Université Badji Mokhtar, Annaba, Algérie 245-270.

Hem JD. 1975. Study and Interpretation of the chemical characteristics of Natural water. 2nd ed., U.S. Geological Survey Water – Supply Paper 1473, pp. 364.

Li S, Gu S, Liu W, Han H, Zhang Q. 2008. Water quality in relation to the land use and land cover in the Upper Han River basin, China. Catena 75, 216-222.

McFarlane DJ, Williamson DR. 2002. An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’ experimental catchment. Agricultural Water Management 53, 5-29.

Monjerezi M, Vogt RD, Aagaard P, Saka JDK. 2012. The hydro-geochemistry of groundwater resources in an area with prevailing saline groundwater, lower Shire Valley, Malawi; J. African Earth Sci 68, 67-81.

Parkhurst DL, Appelo CAJ. 2013. Description of input and examples for PHREEQC version 3 -A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap A43, 497 p.

Piper AM. 1994. A graphic procedure in geochemical interpretation of water analyses. Am. Geophys. Union Trans 25, 914-923.

Rengarajan R, Balasubramanian A. 1990 Corrosion and scale formation characteristic of groundwater in and around Nangavalli, Salem District, Tamilnadu. J Appl Hydrol 2, 15-22.

Ribolzi O, Valles V, Bariac T. 1996. Comparison of hydrograph deconvolution using residual alkalinity, chloride and oxygen 18 as hydrochemical tracers. Water Res. Res 32(4), pp 1051-1059.

Richards LA. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington DC, 160 p.

Rodier J, Legube B, Merlet N. 2009. Analyse de l’eau, 9e Ed. DUNOD (éditeur), Paris, France. 1579 p.

Rouabhia A, Fehdi C, Baali F, Djabri L, Rouabhi R. 2009. Impact of human activities on quality and geochemistry of groundwater in the Merdja area, Tebessa, Algeria, Environ Geol 56, 1259-1268.

Schoeller H. 1956. Geochimie des eaux souterraines, Application aux cauxdes gisements de petrole, Soc. Des editor Technip, Paris.

Sedrati N, Djabri L. 2014. Contribution of hydrochemistry to the characterization and assessment of groundwater resources: the case of Tebessa alluvial aquifer (Algeria), Evolving Water Resources Systems: Understanding, Predicting and Managing Water-Society Interactions Proceedings of ICWRS2014, Bologna, Italy, June 2014 (IAHS Publ. 364, 2014) pp. 458-463, doi:10.5194/piahs-364-458-2014.

Subramani T, Elango L, Damodarasamy SR. 2005. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ Geol 7, 1099-1110.

Valles V, Bertrand R, Bourgeat F, N’diaye MK. 1989. Le concept d’alcalinité résiduelle généralisée et l’irrigation des sols sodiques – Application aux sols du Kouroumari (Mali) et de la vallée de l’oued Medjerdah (Tunisie). L’agronomie tropicale 44-3, 157-163.

Vila JM. 1980. La chaıne alpine de l’Algérie orientale et des confins Algero-Tunisiens. Université Pierre et Marie curie, Paris VI, Thèse de Doctorat es-sciences.

Voutsis N, Kelepertzis E, Tziritis E, Kelepertsis A. 2015. Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multi-variate statistical methods; J. Geochem. Explor 159 79-92.

World Health Organization. 2017. Guidelines for drinking water quality. Fourth edition. WHO Press, 631p.

Yangui H, Zouari K, Trabelsi R, Rozanski K. 2011. Recharge mode and mineralization of groundwater in a semi-arid region: Sidi Bouzid plain (central Tunisia); Environ. Earth Sci 63, 969-979.


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background