Growth and yield performance of Sweet Pepper varieties by exogenous application of chitosan-raw-material (Shrimp shell powder)

Paper Details

Research Paper 08/03/2024
Views (899)
current_issue_feature_image
publication_file

Growth and yield performance of Sweet Pepper varieties by exogenous application of chitosan-raw-material (Shrimp shell powder)

Faysal Ahmed, Md. Omar Ali Mollick, Md. Helal Uddin, Mohammad Issak, A. T. M. Shamsuddoha, Rezuana Pervin
Int. J. Biosci. 24(3), 104-111, March 2024.
Copyright Statement: Copyright 2024; The Author(s).
License: CC BY-NC 4.0

Abstract

From October 2022 to April 2023, a pot experiment was carried out to examine how several sweet pepper varieties responded to varying concentrations of chitosan-raw-material (Shrimp Shell Powder). The study used a completely randomized design (CRD) with seven replications and involved two varieties viz. BARI Sweet Pepper-1 (V1) and BARI Sweet Pepper-2 (V2) and the four different concentrations (% w/w) were: C0 = 0%, C1 = 0.1%, C2 = 0.5%, and C3 = 1%. The results showed that the V2 (BARI Sweet pepper-2) treatment had the maximum fruit output plant-1 pot-1 (139.18 g). The use of 1% chitosan-raw-material (C3) significantly increased the sweet pepper plant’s growth and productivity. Based on these findings, it can be said that the application of chitosan-raw-material boosted the yield and yield-contributing traits of sweet peppers and some chemical aspects of the soil. When combined, our findings imply that chitosan-raw-material may be beneficial for soil pH, soil organic carbon, and slow-releasing nitrogen supplementation, all of which have an impact on plant growth, development, and yield.

Adisarwanto. 2000. Increasing Peanut Production in Paddy Fields and Dry Land. Penebar Swadaya. Jakarta. 1-4p.

Bolto B, Dixon D, Eldridge R. 2004. Ion xchange for the removal of natural organic matter. React. Funct. Polym. 60, 171-182.

Chate BR, Mangave KK, Jogdand SM. 2012. Performance of different cultivars of sweet pepper (Sweet pepper annuum L.) under shade house condition. Eco. Environ. Conserv. Paper. 18(3), 573-578.

Chookhongkha N, Miyagawa S, Jirakiattikul Y, Photchanachai S. 2012. Chilli growth and seed productivity as affected by chitosan.  In: Proceedings of the International Conference on Agriculture Technology and   Food Sciences (ICATFS’2012), 17-18 November 2012, Manila, Philippines.  146-149p.

Gomez MA, Gomez AA. 1984. Statistical procedures for Agricultural Research. John Wiley and Sons. New York, Chichester, Brisbane, Toronto. 97–129, 207-215p.

Hammi N, Chen S, Royer S. 2020. Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: synthesis and uses. Materials Today Sustainability, 10.

Hassnain H, Basit A, Alam M, Ahmad I, Ullah I, Alam N, Ullah I, Khalid M, Shair M, Ain N. 2022. Efficacy of chitosan on the performance of Tomato (Lycopersicon esculentum L.) Plant under Water Stress Condition. 1-8p.

Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Phy. Mole. Bio. Plants. 25(2), 313-326.

Islam MS, Abid-Ul-Kabir M, Chakraborty B, Hossain, M. 2017. Review of Agri-Food chain interventions aimed at enhancing consumption of nutritious food by the poor: Bangladesh Lansa Working Paper Series. 2017(12), 1-24.

Islam MT, Khatoon M. 2021. Foliar application of chitosan improved morphological attributes and yield in summer mungbean. Int. J. Expt. Agric. 11(1), 1-3.

Jiao Z, Li Y, Li J, Xu X, Li H, Lu D, Wang J. 2012. Effects of Exogenous Chitosan on Physiological Characteristics of Potato Seedlings under Drought Stress and Rehydration. Potato Res. 55(3-4), 293-301.

Kowalski B, Jimenez TF, Herrera L, Agramonte PD. 2006. Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res. 49, 167-176.

Kumar V, Kirubanandam S, Soundararajan A, Sudha PN. 2018. Chitin and chitosan – The Defence Booster in the Agricultural Field. In book: Handbook of Biopolymers: Advances and Multifaceted Application. 93-134p.

Malekpoor F, Pirbalouti G, Salimi A. 2016.  Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Res. Crops. 17(2), 354-359.

Mondal MMA, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L. 2012. Effect of foliar application of chitosan on growth and yield in okra. Aust. J. Crop Sci. 6(5), 918-921.

Ohta K, Asao T, Hosokl T. 2001. Effect of Chitosan Treatments on Seedling Growth, Chitinase Activity Flower Quality in Eustoma grandiflorum (Raf) Shinn. Kairyou Wakamurasaki. J. Horticultural Sci. Biotechnol. 76 (5), 612-614.

Roohallah RS, Mozhgan VG, John KF. 2023. The application of chitosan as a carrier for fertilizer: A review. International Journal of Biological Macromolecules, 252.

Sathiyabama M, Akila G, Charles RE. 2014.  Chitosan induced defense responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch.  Phytopathol. Plant Prot. 47, 1777-1787.

Sultana S, Dafader NC, Khatun F, Rahman M, Alam J. 2015.  Foliar application of oligo-chitosan improves the morphological character and yield in rice. Nuclear Sci. Appl. 24(1&2), 51 –53.

Tyagi S. 2017. Pre-harvest Factors Influencing the Postharvest Quality of Fruits: A Review. Cur. J. App. Sci. Tech. 23, 1-12.

Zubir M. 2017. Effect of Mixed Mycorrhizal Doses (Glomus mosseae (sweet pepper annum L.) in Andisol Burni Telong Land, Bener Meriah Regency. Skripsi. Agrotechnology Department, Syiah Kuala University. Banda Aceh.  1, 12-19.

Related Articles

Sensory evaluation of horn snail (Telescopium telescopium) patty

Ma. Isabel P. Lanzaderas, Gilbert P. Panimdim, Proceso C. Valleser Jr.*, Int. J. Biosci. 28(2), 7-16, February 2026.

Two years evolution of deltamethrin, malathion and pirimiphos-methyl resistance in Aedes aegypti from urban in peri urban sites of Ouagadougou, Burkina Faso

Hyacinthe K. Toe*, Moussa W. Guelbeogo, Soumananaba Zongo, Aboubacar Sombie, Athanase Badolo, Int. J. Biosci. 28(2), 1-6, February 2026.

Physicochemical characterization of annatto seeds (Bixa orellana) sold in Ouagadougou and their oils extracted using chemical processes

Mah Alima Esther Traoré*, Adama Lodoun, Pingdwindé Marie Judith Samadoulougou-Kafando, Nestor Beker Dembélé, Kiswendsida Sandrine Léticia Dayamba, Charles Parkouda, Int. J. Biosci. 28(1), 169-178, January 2026.

Inventory of african yam bean (Sphenostylis stenocarpa (Hochst. ex A. Rich.) Harms) diversity in some Yoruba areas of Benin

Orobiyi Azize*, Faton Manhognon Oscar Euloge, Zongo Élisabeth Aboubié, Sossou Kpèdé Nicodème, Houngbo Marcel, Dossou Pierre Fourier, Ogoudjobi Ladékpo Sylvain, Balogoun Ibouraïman, Dansi Alexandre, Lokoyêyinou Laura Estelle, Int. J. Biosci. 28(1), 161-168, January 2026.

A severe case of human hepatic fascioliasis mimicking an oncological disease in Azerbaijan

Aygun A. Azizova*, Int. J. Biosci. 28(1), 155-160, January 2026.

Combined effect of irrigation frequency and leaf harvesting intensity on soil water content and productivity of baobab (Adansonia digitata) seedlings in vegetable production

Sissou Zakari, Imorou F. Ouorou Barrè, Mouiz W. I. A. Yessoufou*, Colombe E. A. E. Elegbe, Amamath S. Boukari, P. B. Irénikatché Akponikpè, Int. J. Biosci. 28(1), 143-154, January 2026.

Develop sustainable coffee-based farming model using cash crops production

Maribel L. Fernandez, Roje Marie C. Rosqueta*, Diosa G. Alasaas, Boyet C. Pattung, Jaylord Dalapo, Janette Empleo, Int. J. Biosci. 28(1), 134-142, January 2026.

Animal anthrax in northern Tanzania (2015-2025): Epidemiological trends and frontline response capacity

Yohana Michael Kiwone*, Beatus Lyimo, Rowenya Mushi, Joram Buza, Int. J. Biosci. 28(1), 123-133, January 2026.