Growth performance, photosynthetic status and bioaccumulation of heavy metals by Paulownia tomentosa (Thunb.) Steud growing on contaminated soils

Paper Details

Research Paper 01/04/2015
Views (179) Download (5)

Growth performance, photosynthetic status and bioaccumulation of heavy metals by Paulownia tomentosa (Thunb.) Steud growing on contaminated soils

Nada Ben Bahri, Bochra Laribi, Sihem Soufi, Salah Rezgui, Taoufik Bettaieb
Int. J. Agron. Agri. Res.6( 4), 32-43, April 2015.
Certificate: IJAAR 2015 [Generate Certificate]


This work focuses on the study of the potential of a woody specie Paulownia tomentosa (Thunb.) Steud in the phytoremediation of soils polluted by heavy metals. Total metal concentrations in soil samples as well as their bioaccumulation in plant tissues were performed by Atomic Absorption Spectrometry. Bioaccumulation factors (BF) and translocation factors (TF) were calculated in order to determine the effectiveness of plants in removing heavy metals from soil. Results showed that heavy metals significantly affected the root biomass production compared to the leaf biomass and caused slight reductions in all growth parameters. However, the presence of high amounts of ETM in polluted substratum restricted the synthesis of chlorophyll pigments and lead to the deterioration of photosynthetic parameters. Zn, Pb and Cd were found in plant shoots and roots at different levels, between 5.083 and 205.33 mg kg-1 DMW for Zn, 23.22 and 50.13 mg kg-1 DM for Pb and between 0 and 3.88 mg kg-1 DMW for Cd. Translocation and bioaccumulation factors indicated that Paulownia tomentosa could be used in the phytoextraction of Zn and Pb.


Alloway BJ. 1995. Soil processes and the behavior of metals. In: Alloway BJ, ed. Heavy metals in soils. Blackie and Sons Limited. Glasgow, 1-52.

Anderson LL. 2007. Assessment of Thelypteris palustris, Asparagus sprengeri and Lolium perenne for their potential use in the phytoremediation of arsenic contaminated soils. PhD thesis,.Louisiana State University, Lousiana, USA.

Arnon D. 1949. Copper enzymes in isolated chloroplasts.Polyphenoloxidase. In: Beta vulgaris. Plant Physiology 24, 1-15.

Azzarello E, Pandolfi C, Giordano C, Rossi M, Mugnai S, Mancuso S. 2012. Ultra-morphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environmental Experimental Botany 81, 11-17.

Baker NR, Rosenqvist E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55, 1607-1621.

Bjorkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77°K among vascular plants of diverse origins. Planta 170, 489-504.

Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ. 1997. Phytoremediation of soil metals.Current Opinion Biotechnology 18, 279-283.

Djebali W, Chaibi W, Ghorbel MH. 2002. Croissance, activité peroxydasique et modifications ultrastructurales induites par le cadmium dans la racine de tomate. Revue Canadienne de Botanique 80 (9), 942-953.

Doumett S, Azzarello DE, Mancuso S, Mugnai S, Petruzzelli G, Del M. 2010. Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study. International Journal of Phytoremediation 13, 1-17.

Ebbs SD, Kochian LV. 1997. Toxicity of zinc to Brassica species: implication for phytoremediation. Journal of Environmental Quality 26, 776-781.

Faller P, Kienzler K, Liszlay AK. 2005. Mechanism of Cd2+ toxicity: Cd2+ inhibited photoactivation of photosystemⅡ by competitive binding to the essentialCa2+ site. Biochimica et Biophysica Acta 1706, 158-164.

Fitz WJ, Wenzel WW. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology 99(3), 259-278.

Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Avino J. 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochemical and Biophysical Research Communications 303, 440-445.

Ghosh M, Spingh SP. 2005. A review on phytoremediation of heavy metals and utilization of its by products. Applied Ecology and Environmental Research 3, 1-18.

Hansch R, Mendel RR. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe,Ni, Mo,B, Cl). Current Opinion in Plant Biology 12, 259-266.

Hattab S, Dridi B, Chouba L, Ben Kheder M, Bousetta H. 2009. Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. Journal of Environmental Sciences 21, 1552-1556.

Hunt R. 1982. Plant growth curves: the functional approach to plant growth analysis. Edward Arnold, London.

Jung MC, Thornton I. 1996. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry 11, 53-59.

Juneau P, Dewez D, Matsui S, Kim SG, Popovic R. 2001. Evaluation of different algal species sensitivity to mercury and metachlor by PAM-fluorometry. Chemosphere 45, 589-598.

Lei L, Xiaoping H, Borthakur D, Hui N. 2012. Photosynthetic activity and antioxidative response of seagrass Thalassia hemprichii to trace metal stress. Acta Oceanologica Sinica 31(3), 98-108.

Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that hyperaccumulates arsenic. Nature 409, 579.

Mc KinneyG. 1941. Absorption light by chlorophyll solutions. Journal of Biological Chemistry 140, 315-322.

Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semi arid environments-an emerging remediation technology. Environmental health perspectives. 116 (3), 278-283.

Miladinova K, Markovska Y, Tzvetkova N, Geneva M, Georgieva T. 2014. Photosynthesis and growth response of Paulownia tomentosa x fortunei hybrid plants to different levels of heavy metals Cd, Pb and Zn. Silva Balcanica 15 (1), 84-99.

Mysliwa-Kurdziel A, Strzalka K. 2002. Influence of metals on biosynthesis of photosynthetic pigments. In: Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Prasad MNV, Strzalka K, ed. Kluwer Academic Publishers, Netherlands, 201-227.

Naânaâ W, Susini J. 1988. Méthodes d’analyse physique et chimique des sols. ES 252, Direction des Sols, Ministère de l’Agriculture, Tunisie, 118.

Patsikka E, Aro EM, Tyystjarvi E. 2001. Mechanism of copper enhanced photoinhibition in thylakoid membranes. Physiologia Plantarum 113(1), 142-150.

Pulford ID, Watson C. 2003. Phytoremediation of heavy metal-contaminated land by trees – a review. Environment International 29, 529–540.

Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C. 2005. Lead induced changes in antioxidant metabolism of horsegram (Macrotylomauniflorum (Lam.) Verdc.) and bengalgram (Cicerarietinum L.). Chemosphere 60(1), 97-104.

SAS Institute. 1999. SAS/STAT User’s Guide, version 8.SAS Institute Inc. Cary, NC.

Sauve S, McBride MB, Norvell WA, Hendershot WH. 1997. Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water, Air and Soil Pollution 100, 133-149.

Sigfridsson KGV, Bernat G, Mamedov F, Styring S. 2004. Molecular interference of Cd2+with Photosystem II. Biochimica et Biophysica Acta 1659, 19-31.

Simonnot MO, Cruze V. 2008 Procédés des traitements physiques et chimiques des sols pollués. Techniques de l’ingénieur, JB5, j 3981.

Sinha S, Sinam G, Mishra RK, Mallick S. 2010. Metal accumulation, growth, antioxidants and oil yield of Brassica junceaL. exposed to different metals. Ecotoxicology and Environmental Safety 73 (6), 1352-1361.

Sinha J, Shrivastava S. 2012. Pot experiment study showed the effect of Pb and Cd in Brassica juncea L. by Chlorophyll and Ascorbic acid content estimation. Journal of Current Pharmaceutical Research 9(1), 33-36.

Sottnikova A, Lunackova L, Hasarovicova E, Lux A, Stresko V. 2003. Changes in the rooting and growth of willows and poplars induced by Cd. Biologia Plantarum 46(1), 129-131.

Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP. 1985. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley.Physiologia Plantarum 63, 293-298.

Torrecillas A, León A, Del Amor F, Mártinez-Monpeán MC. 1984. Determinacion rapida de clorofila en discos foliares de limonero. Fruits 39, 617-622

Tzvetkova N, Miladinova K, Ivanova K, Georgieva T , Geneva M, Markovska Y. 2015. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil. Journal of Environmental Biology 36, 145-151.

Vassilev A, Nikolova A, Koleva L, Lidon F. 2011. Effects of Excess Zn on Growth and Photosynthetic Performance of Young Bean Plants. Journal of Phytology 3(6), 58-62.

Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63, 251-263.

Wang J, Li W, Zhang C, Ke S. 2010. Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei. Journal of Environmental Sciences 22(12), 1916-1922.

Williams LE, Pittman JK, Hall JL. 2000. Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta 1465, 104-126.

Yamane Y, Kashino Y, Koile H, Satoh K. 1997. Increase in the fluorescence F0 level reversible inhibition of photosystem II reaction center by high temperature treatments in higher plants. Photosynthesis Research 57, 57-64.

Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368, 456-464.

Zengin FK, Munzuroglu O. 2005. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in Bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia (Botanica) 47(2), 157-164.