High prevalence of panton-valentine leukocidin in methicillin-resistant Staphylococcus aureus in a tertiary care hospital in Peshawar, Pakistan

Paper Details

Research Paper 01/07/2019
Views (319) Download (18)

High prevalence of panton-valentine leukocidin in methicillin-resistant Staphylococcus aureus in a tertiary care hospital in Peshawar, Pakistan

Aman Ullah, Bahir Ahmad, Shumaila Rauf, Dorte Frees
Int. J. Biosci.15( 1), 332-340, July 2019.
Certificate: IJB 2019 [Generate Certificate]


Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide notorious pathogen. MRSA pose serious threats to the available therapeutic choices. Panton-Valentine Leukocidin (pvl) is an important virulence factor usually associated with skin and soft tissue infection while staphylococcal complement inhibitor (scn) is considered as a human adaptability marker. Therefore, the given study was conducted to determine the current antibiotic resistance trends, prevalence of induclible clindamycin resistant phenotype, pvl gene, and scn gene in MRSA strains prevailing in Peshawar, Pakistan. This prospective cross-sectional study was carried out at the Center of Biotechnology and Microbiology, University of Peshawar, Pakistan from December 2017 to May 2018.  Non-double consecutive MRSA isolates were anonymously enrolled in the study, isolated from different clinical specimens. Antibiotic susceptibility testing was determined by disc diffusion method, while inducible clindamycin resistance was detected by D-test. Moreover, all the phenotypically identified MRSA were subjected to multiplex PCR for the detection of mecA, mecC, pvl and scn genes. A total of 178 MRSA were included in the study, wherein, none of the isolate was either resistant or sensitive to all the 10 tested antibiotics. The resistance frequency of different antibiotics was: ciprofloxacin 89.8%, erythromycin 80.3%, cotrimoxazole 72.5%, gentamycin 71.9%, fusidic acid 63.4%, tetracycline 60.1%, clindamycin 46.1%, doxycycline 25.8%, and quinupristin/dalfopristin 6.7%, while linezolid was 100% susceptible. Prevalence of inducible clindamycin resistance, pvl and scn were 14.6%, 46.7%, and 97.1% respectively.The studied MRSA strains showed significant resistance toward the common therapeutic choices, and the prevalence of inducible clindamycin resistance and pvl is considerably high.


Afridi FI, Zeb M, Hussain A, Farooqi BJ, Murtuza G. 2014. Inducible clindamycin resistance in Staphylococcus species. Journal of the College of Physicians and Surgeons–Pakistan 24(7), 481-484. http://dx.doi.org/07.2014/JCPSP.481484

Agency HP. 2008. Guidance on the diagnosis and management of PVL-associated Staphylococcus aureus infections (PVL-SA) in England.

Al-Talib H, Yean CY, Al-Khateeb A, Ravichandran M. 2013. Comparative evaluation of three different methods of genomic DNA extraction for Staphylococcus aureus. World Applied Sciences Journal 21, 424-427.

Ansari S, Nepal HP, Gautam R, Rayamajhi N, Shrestha S, Upadhyay G, Chapagain ML. 2014. Threat of drug resistant Staphylococcus aureus to health in Nepal. BMC Infectious Diseases 14(1), 157. http://dx.doi.org/10.1186/1471-2334-14-157

Baysallar M, Kilic A, Aydogan H, Cilli F, Doganci L. 2004. Linezolid and quinupristin/dalfopristin resistance in vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus prior to clinical use in Turkey. International Journal of Antimicrobial Agents 23(5), 510-512.

Bazzi AM, Rabaan AA, Fawarah MM, Al-Tawfiq JA. 2015. Prevalence of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus infections in a Saudi Arabian hospital. Journal of Infection and Public Health 8(4), 364-368. http://dx.doi.org/10.1016/j.jiph.2015.01.010

Brohi NA, Noor AA. 2017. Frequency of the Occurrence of Methicilin Resistant Staphylococcus aureus (MRSA) Infections in Hyderabad, Pakistan. Pakistan Journal of Analytical and Environmental Chemistry 18(1), 84-90.

CLSI. 2018. Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA.

Frieri M, Kumar K, Boutin A. 2017. Antibiotic resistance. Journal of Infection and Public Health 10(4), 369-378. http://dx.doi.org/10.1016/j.jiph.2016.08.007

Jamil B, Gawlik D, Syed MA, Shah AA, Abbasi SA, Muller E, Monecke S. 2018. Hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) from Pakistan: molecular characterisation by microarray technology. European Journal of Clinical Microbiology and Infectious Diseases 37(4), 691-700. http://dx.doi.org/10.1007/s10096-017-3161-y

Kaleem F, Usman J, Hassan A, Omair M, Khalid A, Uddin R. 2010. Sensitivity pattern of methicillin resistant Staphylococcus aureus isolated from patients admitted in a tertiary care hospital of Pakistan. Iranian Journal of Microbiology 2(3), 143-146.  Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22347563

Kaneko J, Kamio Y. 2004. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Bioscience Biotechnology and Biochemistry 68(5), 981-1003. http://dx.doi.org/10.1271/bbb.68.981

Karmakar A, Jana D, Dutta K, Dua P, Ghosh C. 2018. Prevalence of Panton-Valentine Leukocidin Gene among Community Acquired Staphylococcus aureus: A Real-Time PCR Study. Journal of pathogens 2018, 4518541. http://dx.doi.org/10.1155/2018/4518541

Khodabandeh M, Mohammadi M, Abdolsalehi MR, Alvandimanesh A, Gholami M, Bibalan MH, Rajabnia R. 2019. Analysis of Resistance to Macrolide-Lincosamide-Streptogramin B Among mecA-Positive Staphylococcus Aureus Isolates. Osong Public Health Res Perspect 10(1), 25-31. http://dx.doi.org/10.24171/j.phrp.2019.10.1.06

Madzgalla S, Syed MA, Khan MA, Rehman SS, Muller E, Reissig A, Monecke S. 2016. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections in patients from Malakand, Pakistan. European Journal of Clinical Microbiology and Infectious Diseases 35(9), 1541-1547. http://dx.doi.org/10.1007/s10096-016-2695-8

McGrath B, Rutledge F, Broadfield E. 2008. Necrotising pneumonia, Staphylococcus aureus and Panton-Valentine leukocidin. Journal of the Intensive Care Society 9(2), 170-172.

Melles DC, van Leeuwen WB, Boelens HA, Peeters JK, Verbrugh HA, Van Belkum A. 2006. Panton-Valentine leukocidin genes in Staphylococcus aureus. Emerging Infectious Diseases 12(7), 1174-1175. http://dx.doi.org/10.3201/eid1207.050865

O’Neill. 2016. Tackling drug-resistant infections globally: final report and recommendations. Review of antimicrobial resistance. London: HM Government and Wellcome trust; 2016.

Perveen I, Majid A, Knawal S, Naz I, Sehar S, Ahmed S, Raza MA. 2013. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococci in Rawalpindi, Pakistan. Journal of Advances in Medicine and Medical Research 3(1), 198.

Perwaiz S, Barakzi Q, Farooqi BJ, Khursheed N, Sabir N. 2007. Antimicrobial susceptibility pattern of clinical isolates of methicillin resistant Staphylococcus aureus. Journal of the Pakistan Medical Association 57(1), 2-4.  Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17319409

Sohail M, Latif Z. 2017. Prevalence and antibiogram of methicillin resistant Staphylococcus aureus isolated from medical device-related infections; a retrospective study in Lahore, Pakistan. Revista da Sociedade Brasileira de Medicina Tropical 50(5), 680-684. http://dx.doi.org/doi:10.1590/0037-8682-0352-2016

Stegger M, Andersen PS, Kearns A, Pichon B, Holmes MA, Edwards G, Larsen AR. 2012. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clinical Microbiology and Infection 18(4), 395-400. http://dx.doi.org/10.1111/j.1469-0691.2011.03715.x

Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews 28(3), 603-661. http://dx.doi.org/10.1128/CMR.00134-14

Ullah A, Qasim M, Rahman H, Khan J, Haroon M, Muhammad N, Muhammad N. 2016. High frequency of methicillin-resistant Staphylococcus aureus in Peshawar Region of Pakistan. Springerplus 5(1), 600.

Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T 40(4), 277-283.  Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25859123

WHO. 2014. Antimicrobial resistance: global report on surveillance: World Health Organization.

Woods CR. 2009. Macrolide-inducible resistance to clindamycin and the D-test. The Pediatric Infectious Disease Journal 28(12), 1115-1118. http://dx.doi.org/10.1097/INF.0b013e3181c35cc5

Worthing KA, Abraham S, Pang S, Coombs GW, Saputra S, Jordan D, Norris JM. 2018. Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Australian Animals and Veterinarians. Microbial Drug Resistance 24(2), 203-212. http://dx.doi.org/10.1089/mdr.2017.0032

Yu F, Lu C, Liu Y, Sun H, Shang Y, Ding Y, Huang X. 2014. Emergence of quinupristin/dalfopristin resistance among livestock-associated Staphylococcus aureus ST9 clinical isolates. International Journal of Antimicrobial Agents 44(5), 416-419.

Zhang C, Guo L, Chu X, Shen L, Guo Y, Dong H, Van der Veen S. 2016. Presence of the Panton-Valentine leukocidin genes in methicillin-resistant Staphylococcus aureus is associated with severity and clinical outcome of hospital-acquired pneumonia in a single center study in China. PloSOne 11(6), e0156704.