International network for natural sciences – research journal
  • mendeley icon
  • linkedin icon
  • google plus icon
  • twitter icon
  • google scholar icon
  • facebook icon

Role of native arbuscular mycorrhizal fungi on maize (Zea mays) growth and nutrient uptake in acidic soils under controlled conditions

By: Réussite Bugale Malembaka, Richard Onwonga, Joyce Jefwa, Fredrick Ayuke, Leon Nabahungu,

Key Words: Native AMF, Phosphorus, Zinc, Ferralsol, Nitisol, Maize

Int. J. Agron. Agri. Res. 18(3), 20-32, March 2021.

Certification: ijaar 2021 0233 [Generate Certificate]

Abstract

Indigenous arbuscular mycorrhizae Fungi (AMF) have a potential to boost maize (Zea mays) growth and increase the P and Zn uptake through the symbiotic association they form with the plant, even in acidic soils conditions. Five AMF inoculums produced from the most abundant and ubiquitous morphotypes isolated from field soils in maize fields in South Kivu (DRC) were assessed. A greenhouse experiment was conducted to determine the role of these AMF on nutrients uptake in a Nitisol and a Ferralsol. Eight treatments namely inoculums named AMF1 (Gigaspora gigantea), AMF2 (Gigaspora sp.), AMF3 (Gigaspora margarita), AMF4 (Rhizophagus intraradices) AMF5 (Acaulospora reducta), mineral phosphorus fertilizers (Pi), commercial biofertilizer Rhizatech and a Control were laid in a randomized complete block design. In the Ferralsol, Pi application, Rhizatech and AMF2 produced the highest height. Pi application resulted in the best shoot biomass. No difference was observed for the P content, but for the Zn content, AMF2 was the highest. Roots colonization did not vary among treatments. In the Nitisol, AMF4 produced the highest plant height and AMF1 the highiest chlorophyll content. AMF4 and Rhizatech colonized highly the roots. AMF3 gave the highest P however, Zinc content was equal in all treatments and the controls yielded the lowest results. Spores densities in both inoculums produced and experimental soils were low compared to the commercial inoculum but growth and roots colonisation was influenced by fertilization and soils types. The performance of efficient AMF inoculums of Gipaspora gigantea, Gigaspora sp., Rhizophagus intraradices and Acaulospora reducta applied with high densities spores and multispecies inoculums should be assessed.

| Views 4 |

| Views 4 |

Role of native arbuscular mycorrhizal fungi on maize (Zea mays) growth and nutrient uptake in acidic soils under controlled conditions

Achieng JO, Ouma G, Odhiambo G, Muyekho F. 2010. Effect of farmyard manure and inorganic fertilizers on maize production on Alfisols and Ultisols in Kakamega, western Kenya. Agriculture and Biology Journal of North America 1(4), 430-439.

Aguk AJ. 2013. Evaluation of the effect of arbuscular mycorrhizal fungi and rhizobacteria inoculation on performance of potato (Solanum tuberosum). MSc thesis. University of Nairobi. Nairobi, Kenya. 105p

Anonymous. 2018. Sécurité alimentaire, niveau de production agricole et Animale, Évaluation de la Campagne Agricole 2017-2018 et Bilan Alimentaire du Pays. Ministere de l’Agriculture. USAID Raport. Kinshasa. République Démocratique du Congo. 85p.

Augé RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3-42.

Badibanga T. 2013. Agricultural Development in the Democratic Republic of the Congo: Constraints and Opportunities. Revue d’intelligence stratégique et des relations internationales. Kinshasa. 25p

Bagula ME, Pypers P, Mushagalusa NG, Muhigwa JB. 2014. Assessment of Fertilizer Use Efficiency of Maize in the Weathered Soils of Walungu District, DR Congo. In Vanlauwe, B., VanAsten, P., Blomme, G. (Eds.) Challenges and Opportunities for Agricultural Intensification of the Humid Highland Systems of Sub-Saharan Africa. Springer 187-199.

Bashagaluke JB. 2014. Characterization of Soils Using Infrared Scanning in South Kivu Province, Democratic Republic of Congo. MSc thesis dissertation, Kenyatta University. Nairobi, Kenya. 87p.

Batjes NH. 2011. Global distribution of soil phosphorus retention potential. Wageningen, ISRIC—World Soil Information (with dataset), ISRIC Report 2011/06.

Berruti A, Lumini E, Balestrini R, Bianciotto V. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Frontiers in microbiology 6, 1559.

Brady NC, Weil RR. 2002. The nature and properties of soils. NJ: Prentice Hall. Edn. 13. Upper Saddle River. USA.

Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with Mycorrhizas in Forestry and Agriculture. AClAR Monograph 32, 380p.

Bucher M. 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173(1), 11-26.

Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M. 2004. Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. Journal of Environmental Horticulture 22(3), 149-154.

Cozzolino V, Di Meo V, Piccolo A. 2013. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploration 129, 40-44.

Crespo R. 2015. Impact of arbuscular mycorrhizal fungi on the physiology of maize genotypes under variable nitrogen and phosphorus levels. PhD Thesis Dissertations. University of Nebraska – Lincoln. Nebraska, USA. 150p.

FAO. 2015. World Reference Base for Soil Resources. World Soil Resources Reports No. 106, 192p.

FAOSTAT. 2018. Statistics database Crop production. Food and Agriculture Organization of the United Nations. Rome. http://www.fao.org/faostat/en/ #data/QC (Accessed in July, 2018).

Fattah OA. 2013. Effect of mycorrhiza and phosphorus on micronutrients uptake by soybean plant grown in acid soil. International Journal of Agronomy and Plant Production 4(3), 429-437.

Faye A, Dalpé Y, Ndung’u-Magiroi K, Jefwa J, Ndoye I, Diouf M, Lesueur D. 2013. Evaluation of commercial arbuscular mycorrhizal inoculants. Canadian journal of plant science 93(6), 1201-1208.

Feddermann N, Finlay R, Boller T, Elfstrand M. 2010. Functional diversity in arbuscular mycorrhiza-the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal ecology 3(1), 1-8.

Gai JP, Feng G, Christie P, Li XL. 2006. Screening of arbuscular mycorrhizal fungi for symbiotic efficiency with sweet potato. Journal of Plant nutrition            29(6), 1085-1094.

Gekas F, Pankou C, Mylonas I, Ninou E, Sinapidou E, Lithourgidis A, Papathanasiou F, Petrevska JK, Papadopoulou F, Zouliamis P, Tsaprounis G. 2013. The use of chlorophyll meter readings for the selection of maize inbred lines under drought stress. World Academy of Science, Engineering and Technology (WASET). International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 7, 8.

Gomes EA, Oliveira CA, Lana UG, Noda RW, Marriel IE, De Souza FA. 2015. Arbuscular mycorrhizal fungal communities in the roots of maize lines contrasting for Al tolerance grown in limed and non-limed Brazilian Oxisoil. J. Microbiol. Biotechnol 25(7), 978-987.

Habte M, Osorio NW. 2001. Arbuscular mycorrhizas: producing and applying arbuscular mycorrhizal inoculum. University of Hawaii 47p.

Hazelton P, Murphy B. 2016. Interpreting soil test results: What do all the numbers mean?. CSIRO publishing 185p.

Ingleby K. 2007. Assessment of mycorrhizal diversity in soils and roots, and nursery inoculation to improve the survival and growth of seedlings. Mycorrhizal training manual. Centre for Ecology and Hydrology. Penicuik 87p.

Jones A, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Dewitte O, Gallali T, Hallett S, Jones R, Kilasara M, Le Roux P, Micheli E, Montanarella L, Spaargaren O, Thiombiano L, Van Ranst E, Yemefack M, Zougmoré R. 2013. Soil Atlas of Africa. European Commission, Publications Office of the European Union, Luxembourg 176 pp.

Jones Jr JB. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC press 382p.

Karuku GN, Gachene CKK, Karanja N, Cornelis W, Verplancke H, Kironchi G. 2012. Soil hydraulic properties of a nitisol in kabete, Kenya. Tropical and Subtropical Agroecosystems 15, 595-609.

Kavoo-Mwangi AM, Kahangi EM, Ateka E, Onguso J, Jefwa JM. 2014. Commercial microbiological products affect nutrient concentration of tissue cultured banana in three soil types in Kenya. Int. J. Agrisci 4, 344-355.

Koske RE, Gemma JM, 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res 92, 486-505.

Kouadio ANMS, Nandjui J, Krou SM, Séry DJM, Nelson PN, Zézé A. 2017. A native arbuscular mycorrhizal fungus inoculant outcompetes an exotic commercial species under two contrasting yam field conditions. Rhizosphere 4, 112-118.

Kundu CA. 2012. Effect of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria inoculants on growth and phosphorus uptake by orange fleshed sweetpotatoes (Ipomoea batatas (L.)Lam). MSc thesis, University of Nairobi, Nairobi 96p.

Lambert DH, Baker DE, Cole H. 1979. The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Sci. Soc. Am. J 43, 976-980.

Lehman RM, Taheri WI, Osborne SL, Buyer JS, Douds Jr DD. 2012. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Applied Soil Ecology 61, 300-304.

Marin M. 2006. Arbuscular mycorrhizal inoculation in nursery practice. Handbook of Microbial Biofertilizers  pp. 289-324.

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115, 495-501.

Mukhongo RW, Tumuhairwe JB, Ebanyat P, AbdelGadir AH, Thuita M, Masso C. 2017. Combined Application of Biofertilizers and Inorganic Nutrients Improves Sweet Potato Yields. Frontiers in Plant Science 8, 219.

Mukhongo RW, Tumuhairwe JB, Ebanyat P, AbdelGadir AH, Thuita M, Masso C. 2016. Production and Use of Arbuscular Mycorrhizal Fungi Inoculum in Sub-Saharan Africa: Challenges and Ways of Improving. Int. J. Soil Sci 11, 108-122

Mushagalusa NG, Karume K, Ndusha B, Basengere A, Bayisha A, Bisuri AB, Chimanuka B, Banswe G. 2017. Building the evidence base on the agricultural nutrition nexus: Democratic Republic of Congo. CTA and UEA 46p.

Ndonda A. 2018. Evaluations agronomiques des champignons mycorhiziens locaux sur la productivité du Manioc (Manihot esculenta Crantz) en sols dégradés des jachères herbeuses à Kisangani/ R.D Congo. PhD Thesis. Université de Kisangani. Kisangani 209p.

Ngakou A, Megueni C, Nwaga D, Mabong MR, Djamba FE, Gandebe M. 2006. Solanum tuberosum (L.) Responses to Soil Solarization and Arbuscular Mycorrhizal Fungi Inoculation under Field Conditions: Growth, Yield, Health Status of Plants and Tubers. Middle-East Journal of Scientific Research 1(1), 23-30.

Ngongo ML, Van Ranst E, Baert G, Kasongo EL, Verdoodt A, Mujinya BB, Mulalay J. 2009. Guide des sols en RD Congo. Tome I: Etude et Gestion. Imprimerie Salama-Don Bosco, Lubumbashi 260p.

Nwaga D, Ambassa-Kiki R, Ngonkeu Mangaptché E L, Tchiegang-Megueni C. 2003. Selection of arbuscular mycorrhizal fungi for inoculating maize and sorghum grown in Oxisol/Ultisol and Vertisol in Cameroon. In Bationo, A (Ed). Managing Nutrient Cycles to Sustain Soil Fertility in Sub-Saharan Africa. Academy Science Publishers 467-486.

Nziguheba G, Zingore S, Kihara J, Merckx R, Njoroge S, Otinga A, Vandamme E, Vanlauwe B. 2016. Phosphorus in smallholder farming systems of sub-Saharan Africa: implications for agricultural intensification. Nutrient cycling in agroecosystems 104(3), 321-340.

Okalebo JR, Gathua KW, Woomer PL. 2002. Laboratory Methods of Soil and Plant Analysis: A Working Manual (2nd Edition): A Working manual. Soil Science Society of East Africa. Technical Publication No. 1. Marvel EPZ (Kenya) LTD, Nairobi, Kenya 131p.

Okalebo JR, Othieno CO, Woomer PL, Karanja NK, Semoka JRM, Bekunda MA, Mugendi DN, Muasya RM, Bationo A, Mukhwana EJ. 2007. Available technologies to replenish soil fertility in East Africa. In Bationo, A., Waswa, B., Kihara, J., Kimetu, J. (Eds). Advances in integrated soil fertility management in sub-Saharan Africa: Challenges and Opportunities. Springer, Dordrecht 45-62.

Onwonga RN, Lelei JJ, Macharia JK. 2013. Comparative effects of soil amendments on phosphorus use and agronomic efficiencies of two maize hybrids in acidic soils of Molo County, Kenya. American Journal of Experimental Agriculture 3(4), 939-958.

Ortas I, Sari N, Akpinar Ç, Yetisir H. 2011. Screening mycorrhiza species for plant growth, P and Zn uptake in pepper seedling grown under greenhouse conditions. Scientia Horticulturae  128(2), 92-98.

Parewa HP, Rakshit A, Rao AM, Sarkar NC, Raha P. 2010. Evaluation of maize cultivars for phosphorus use efficiency in an Inceptisol. Int. J. Agric. Environ. Biotechnol 3, 195-198.

Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23(7), 515-531.

Santpoort R. 2020. The Drivers of maize area expansion in Sub shaharan Africa. How policies to boost maize production overlook the interests of smallholder farmers. Land 9, 68.

Schröder JJ, Smit AL, Cordell D, Rosemarin A. 2011. Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere 84, 822-831.

Séry D, Kouadjo ZG, Voko BR, Zézé A. 2016. Selecting native arbuscular mycorrhizal fungi to promote cassava growth and increase yield under field conditions. Frontiers in microbiology 7, 2063.

Smith SE, Read DJ. 2010. Mycorrhizal symbiosis. Academic press 787p.

Smith SE, Smith FA. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62, 227-250.

Solaiman ZM, Abbott LK, Varma A. 2014. Mycorrhizal fungi: use in sustainable agriculture and land restoration. Vol. 41. Springer. Berlin 404p.

Symanczik S, Lehmann MF, Wiemken A, Boller T, Courty PE. 2018. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza 28(8), 779-785.

Tian H, Drijber RA, Li X, Miller DN, Wienhold BJ. 2013. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23(6), 507-514.

Tittonell P, Giller KE. 2013. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research 143, 76-90.

Zabinski CA, Bunn RA. 2014. Function of mycorrhizae in extreme environments. In Solaiman, M. Z., Abbott, K. L., Varma, A. (Eds). Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration (pp.). Springer, Berlin 201-214.

Zingore S, Njoroge S, Chikowo R, Kihara J, Nziguheba G, Nyamangara J. 2014. 4R plant nutrient management in African agriculture: An extension handbook for fertilizer management in smallholder farming systems. IPNI 114p.

Réussite Bugale Malembaka, Richard Onwonga, Joyce Jefwa, Fredrick Ayuke, Leon Nabahungu,.
Role of native arbuscular mycorrhizal fungi on maize (Zea mays) growth and nutrient uptake in acidic soils under controlled conditions.
Int. J. Agron. Agri. Res. 18(3), 20-32, March 2021.
https://innspub.net/ijaar/role-of-native-arbuscular-mycorrhizal-fungi-on-maize-zea-mays-growth-and-nutrient-uptake-in-acidic-soils-under-controlled-conditions/
Copyright © 2021
By Authors and International Network for
Natural Sciences (INNSPUB)
https://innspub.net
brand
innspub logo
english language editing
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Publish Your Article
  • CALL FOR PAPERS
    CALL FOR PAPERS
    Submit Your Article
INNSPUB on FB
Email Update