Impact of landuse practices on agrobiodiversity in selected organic and conventional agroecosystems in Bulgeria

Paper Details

Research Paper 01/02/2014
Views (585)
current_issue_feature_image
publication_file

Impact of landuse practices on agrobiodiversity in selected organic and conventional agroecosystems in Bulgeria

Vladislav Popov, Georgi Popgeorgiev, Dimitar Plachiyski, Nedko Nedialkov, Ognian Todorov
J. Biodiv. & Environ. Sci. 4(2), 119-129, February 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Agrobiodiversity in agroecosystems and their role for maintaining their stability in absence of chemical inputs is not sufficiently investigated in Europe. As a first step in a larger study, this investigation focused on the territory of Eastern Rhodope mountain of Bulgaria in June – September 2012. It tried to compare the impact of organic and conventional agricultural landuse on certain agrobiodiversity indicator groups (insects, birds and small mammals). On the basis of determined taxa density and abundance, and in order to assess and compare biodiversity of the selected indicator groups (insects at the level of order), indices of biodiversity of Shannon (Shannon_H index) and ‘Diversity profiles’ were calculated. The overall biodiversity of the indicator groups in selected organic landuses (cereals, orchard and pasture) was higher (i.e. index of biodiversity Shannon_H and diversity profiles) than in the reference conventional landuses. However, when analysed individually, the three indicator groups showed no statistically significant differences between organic and conventional areas by the index of biodiversity Shannon_H. Nevertheless, a significant difference in exemplar density of class Insecta (2237 exemplars in organic against 712 in conventional landuses) was detected in spring and summer. The results can be attributed to the absence of chemical plant protection inputs in organic cereals and orchards, minimal soil cultivation and the regulated grazing in the organic pastures/meadows. The results are a basis for further more extensive research, comprising a longer period of e.g. 3-4 years, more organic and conventional plots and crops, monitoring agrobiodiversity indicators at the level of species, etc.

Azeez G. 2000. The Biodiversity Benefits of Organic Farming, Soil Association, UK.

Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 9.

Heyer WR, Donnely MA, Mc Diarmid RW, Hayek LC, Foster MS. (Eds) 1994. Measuring and Monitoring Biological Diversity. Smithsonian Institution Press, Washington.

IUCN 1994. Guidelines for Protected Area Management Categories, IUCN, Switzerland and UK.

Karaseva E, Telicina A. 1996. Methods for studying rodents under field conditions. Publishing House ‘Nauka’ (in Russian).

Popov А, Delchev H, Hubenov Z, Beshovski V, Dobrev D, Georgiev B. 2000. Invertebrate fauna (Editors: Popov A., Meshinev E.). Highland treeless zone of the National Park Central Balkan. Biological diversity and problems of its protection. Sofia, BSPOB, 351-431 (in Bulgarian).

Popov V. 2007. Methods for study the mammals. In: ‘Mammals and significance of their protection in Bulgaria”, 15-30 (in Bulgarian).

Simeonov  S,  Michev  T.  1991.  Birds  in  Balkan Peninsula. Publishing House ‘Petar Beron’ – Sofia (in Bulgarian).

Snow DW, Perrins CM. 1998. The Birds of the Western Palearctic 1, Non-Passerines. Oxford University Press, Oxford.

Sutherland W. 2006. Ecological Census Techniques. 2nd edn. Cambridge University Press, Cambridge.

Svensson L, Grant P, Mullarney K, Zetterström D. 2000. The most complete guide to the birds of Britain and Europe. Harper Collins, London.

Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 2005. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874.

Tothmeresz B. 1995. Comparison of different methods for diversity ordering. Journal of Vegetation Science 6, 283-290.

Related Articles

Design and development of a sustainable chocolate de-bubbling machine to reduce food waste and support biodiversity-friendly cacao processing

John Adrian B. Bangoy, Michelle P. Soriano, J. Biodiv. & Environ. Sci. 27(4), 41-47, October 2025.

Ecological restoration outcomes in Rwanda’s Rugezi wetland: Biodiversity indices and food web recovery

Concorde Kubwimana, Jean Claude Shimirwa, Pancras Ndokoye, J. Biodiv. & Environ. Sci. 27(4), 32-40, October 2025.

Noise pollution in the urban environment and its impact on human health: A review

Israa Radhi Khudhair, Bushra Hameed Rasheed, Rana Ihssan Hamad, J. Biodiv. & Environ. Sci. 27(4), 28-31, October 2025.

Prevalence of Anaplasma marginale and Ehrlichia ruminantium in wild grasscutter’ specific ticks in southern Côte d’Ivoire

Zahouli Faustin Zouh Bi, Alassane Toure, Yatanan Casimir Ble, Yahaya Karamoko, J. Biodiv. & Environ. Sci. 27(4), 21-27, October 2025.

Impact of social media campaigns on farmers awareness of environmental conservation practices

Preeti Raina, Rahul Kumar Darji, Rahul Mittal, J. Biodiv. & Environ. Sci. 27(4), 1-8, October 2025.

Phytochemical analysis and antioxidant activity of ethanolic leaves extract of Psidium guajava

G. Saranya, K. Durgadevi, V. Ramamurthy, J. Biodiv. & Environ. Sci. 27(3), 57-63, September 2025.

Physicochemical and phytochemical analysis of Glycyrrhiza glabra root extract

J. Ramalakshmi, P. Vinodhiniand, V. Ramamurthy, J. Biodiv. & Environ. Sci. 27(3), 50-56, September 2025.