Importance of soils when estimating carbon storage in Central African swamp forests

Paper Details

Research Paper 02/07/2025
Views (223)
current_issue_feature_image
publication_file

Importance of soils when estimating carbon storage in Central African swamp forests

Yannick Enock Bocko, Greta Christina Dargie, Suspense Averti Ifo, Jean Joël Loumeto, Simon L. Lewis
Int. J. Biosci. 27(1), 8-20, July 2025.
Copyright Statement: Copyright 2025; The Author(s).
License: CC BY-NC 4.0

Abstract

The swamp forests of Central Africa, although little anthropised, could undergo major change in the future. Monitoring spatio-temporal variations in their carbon stocks requires the inclusion of key forest compartments, in particular the soil, which is rarely quantified. The aim of this study was to assess the soil’s contribution to total carbon storage in the three forest types of the swamp forests of the Congolese Cuvette: flooded forest (FF), periodically flooded forest (PFF) and terra firma forest (TFF). Soil samples from the 0-15 cm horizon and measurements of trees (dead and alive) were taken in 41 permanent nested circular plots. Chemical analysis of the soils revealed that organic carbon, total nitrogen, organic matter, pH and C/N increased significantly from TFF to FI. Soil carbon content tended to double from TFF to PFF and from PFF to FF. The C/N ratio < 25 obtained under PFF and TFF indicates normal OM mineralization. A highly significant difference was observed between the total carbon including the soil compartment (400.84±12.12, 420.93±18.77 and 411.49±35.33 tC/ha for FF, PFF and TFF respectively) and that excluding it (313.47±12.42, 406.74±18.38 and 407.29±35.37 tC/ha for FF, PFF and TFF respectively). Including the soil compartment in the total carbon estimate added 4, 14 and 87 tons of carbon for TFF, PFF and FF, respectively. These results show the need to include the amount of soil carbon when estimating the carbon stock of the swamp forest of Central Africa.

Amlin G, Suratman MN, Isa NNM. 2014. Soil Chemical Analysis of Secondary Forest 30 Years after Logging Activities at Krau Wildlife Reserve, Pahang, Malaysia. APCBEE Procedia 9, 75–81. https://doi.org/10.1016/j.apcbee.2014.01.014

 ANAC. 2024. Données Météorologique de la région de la Likouala-Données météorologiques du district d’Impfondo pour les 50 dernières années. Base de données annuelles de l’agence nationale de l’aviation civile (ANAC), Ministère de transport et de l’aviation civile, Brazzaville, Congo.

 Balloy B, Bispo A, Bouthier A, Chenu C, Cluzeau D, Degan F, Metzger L. 2017. Tour d’horizon des indicateurs relatifs à l’état organique et biologique des sols, 1-61. hal-02788601

Beilman DW, MacDonald GM, Smith LC, Reimer PJ. 2009. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochemical Cycles 23, 2007GB003112. https://doi.org/10.1029/2007GB003112

Betbeder J, Gond V, Frappart F, Baghdadi NN, Briant G, Bartholome E. 2014. Mapping of Central Africa Forested Wetlands Using Remote Sensing, IEEE. J. Sel. Top. Appl. Earth Observations Remote Sensing 7, 531–542. https://doi.org/10.1109/JSTARS.2013.2269733

Bocko YE, Dargie G, Ifo AS, Yoka J, Loumeto JJ. 2016. Répartition spatiale de la richesse floristique des forêts marécageuses de la Likouala, Nord-Congo. Afrique SCIENCE 12(4), 200-212.

Bonhême I, Rousteau A, Imbert D, Saur E. 1998. Forêt marécageuse à Pterocarpus officinalis : sa situation en gouadeloupe. Bois et Forêts des Tropiques, N°258 (4), 59-68.

Campbell CA, VandenBygaart AJ, Grant B, Zentner RP, McConkey BG, Lemke R, Gregorich EG, Fernandez M. 2007. Quantifying carbon sequestration in a conventionally tilled crop rotation study in southwestern Saskatchewan. Canadian Journal of Soil Science 87, 23-38. https://doi.org/10.4141/S06-015

Carlson BS, Koerner SE, Medjibe VP, White LJT, Poulsen JR. 2017. Deadwood stocks increase with selective logging and large tree frequency in Gabon. Global Change Biology 23, 1648-1660. https://doi.org/10.1111/gcb.13453

Chambers FM, Beilman DW, Yu Z. 2011. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics.

Chave J, Olivier J, Bongers F, Châtelet P, Forget P-M, Van Der Meer P, Norden N, Riéra B, Charles-Dominique P. 2008. Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology 24, 355-366. https://doi.org/10.1017/S0266467408005075

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20, 3177–3190. https://doi.org/10.1111/gcb.12629

Crezee B, Dargie GC, Ewango CEN, Mitchard ETA, Emba BO, Kanyama TJ, Bola P, Ndjango J-BN, Girkin NT, Bocko YE, Ifo SA, Hubau W, Seidensticker D, Batumike R, Imani, G, Cuní-Sanchez A, Kiahtipes CA, Lebamba J, Wotzka H-P, Bean H, Baker TR, Baird AJ, Boom A, Morris PJ, Page SE, Lawson IT, Lewis SL. 2022a. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639-644. https://doi.org/10.1038/s41561-022-00966-7

Crump J (Dir.). 2017. De la fumée sur l’eau – lutter contre les menaces mondiales liées à la destruction et à la dégradation des tourbières. Évaluation du PNUE en vue d’une intervention rapide. Programme des Nations Unies pour l’environnement et GRID-Arendal, Nairobi et Arendal, www.grida.com, 1-76.

Dabin B. 1985. Les sols tropicaux acides. Cah.ORSTOM, sér.Pedol., 21(1), 1984-1985.

Dargie GC, Lawson IT, Rayden TJ, Miles L, Mitchard ETA, Page SE, Bocko YE, Ifo SA, Lewis SL. 2019. Congo Basin peatlands: threats and conservation priorities. Mitig Adapt Strateg Glob Change 24, 669–686. https://doi.org/10.1007/s11027-017-9774-8

Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA. 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90. https://doi.org/10.1038/nature21048

Dinno A. 2015. Nonparametric Pairwise Multiple Comparisons in Independent Groups using Dunn’s Test. The Stata Journal 15, 292-300. https://doi.org/10.1177/1536867X1501500117

Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J. 1994. Carbon Pools and Flux of Global Forest Ecosystems. Science 263, 185–190. https://doi.org/10.1126/science.263.5144.185

Djomo AN, Knohl A, Gravenhorst G. 2011. Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. Forest Ecology and Management 261, 1448–1459. https://doi.org/10.1016/j.foreco.2011.01.031

Dommain R, Couwenberg J, Joosten H. 2011. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews 30, 999-1010. https://doi.org/10.1016/j.quascirev.2011.01.018

Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci 4, 293–297. https://doi.org/10.1038/ngeo1123

Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Honorio Coronado EN, Lähteenoja O, Torres Montenegro L, Valderrama Sandoval E, Zaráte R, Baker TR. 2014. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017. https://doi.org/10.1088/1748-9326/9/12/124017

Ekoungoulou R, Niu S, Loumeto JJ, Ifo AS, Bocko YE, Mikieleko KEF, Guiekisse MDE, Senou H, Liu X. 2015. Evaluating the Carbon Stock in Above-and Below- Ground Biomass in a Moist Central African Forest. Applied Ecology and Environmental Sciences 3(2), 51-59. https://doi.org/10.12691/aees-3-2-4.

 FAO-UNESCO. 1975. Carte mondiale des sols (1/5000000). Volume I, Unesco- Paris, 68.

Gautam S, Pietsch SA. 2012. Carbon pools of an intact forest in G abon. African Journal of Ecology  50, 414–427. https://doi.org/10.1111/j.1365-2028.2012.01337.x

Harmon ME, Sexton J. 1996. Guidelines for Measurements of Woody Detritus in Forest Ecosystems. Publication No. 20. U.S. LTER. Network Office : University of Washington, Seatle, WA, USA, p 73.

Hribljan JA, Suárez E, Heckman KA, Lilleskov EA, Chimner RA. 2016. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetlands Ecol Manage 24, 113–127. https://doi.org/10.1007/s11273-016-9482-2

Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, Sheil D, Sonké B, Sullivan MJP, Sunderland TCH, Taedoumg H, Thomas SC, White LJT, Abernethy KA, Adu-Bredu S, Amani CA, Baker TR, Banin LF, Baya F, Begne SK, Bennett AC, Benedet F, Bitariho R, Bocko YE, Boeckx P, Boundja P, Brienen RJW, Brncic T, Chezeaux E, Chuyong GB, Clark CJ, Collins M, Comiskey JA, Coomes DA, Dargie GC, De Haulleville T, Kamdem MND, Doucet J-L, Esquivel-Muelbert A, Feldpausch TR, Fofanah A, Foli EG, Gilpin M, Gloor E, Gonmadje C, Gourlet-Fleury S, Hall JS, Hamilton AC, Harris DJ, Hart TB, Hockemba MBN, Hladik A, Ifo SA, Jeffery KJ, Jucker T, Yakusu EK, Kearsley E, Kenfack D, Koch A, Leal ME, Levesley A, Lindsell JA, Lisingo J, Lopez-Gonzalez G, Lovett JC, Makana J-R, Malhi Y, Marshall AR, Martin J, Martin EH, Mbayu FM, Medjibe VP, Mihindou V, Mitchard ETA, Moore S, Munishi PKT, Bengone NN, Ojo L, Ondo FE, Peh KS-H, Pickavance GC, Poulsen AD, Poulsen JR, Qie L, Reitsma J, Rovero F, Swaine MD, Talbot J, Taplin J, Taylor DM, Thomas DW, Toirambe B, Mukendi JT, Tuagben D, Umunay PM, Van Der Heijden GMF, Verbeeck H, Vleminckx J, Willcock S, Wöll H, Woods JT, Zemagho L. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87. https://doi.org/10.1038/s41586-020-2035-0

Ifo AS, Koubouana F, Jourdain C, Nganga D. 2015. Stock and Flow of Carbon in Plant Woody Debris in Two Different Types of Natural Forests in Bateke Plateau, Central Africa. OJF 05, 38–47. https://doi.org/10.4236/ojf.2015.51005

Ifo SA, Koubouana F, Binsangou S, Parfait A, Marcelle B. 2017. Amount of Soil Carbon Stock within Primary and Secondary Forest in the North of the Republic of Congo. SE 2, 159. https://doi.org/10.22158/se.v2n2p159

IPCC. 2008. 2006 IPCC Guidelines for National Greenhouse Gas Inventories- A primer, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and Tanabe K. (eds). Published: IGES, Japan. p 20.

Jeyanny V, Husni M, Rasidah KW, Kumar BS, Arifin A, Hisham MK. 2014. Carbon stocks in different carbon pools of a tropical lowland forest and a montane forest with varying topography. Journal of Tropical Forest Science 26(4), 560-571.

Kauffman JB, Bhomia RK. 2017. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS ONE 12(11), 1-17, e0187749. https://doi.org/10.1371/journal.pone.0187749

Kauffman JB, Donato D. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper 86. Center for International Forestry Research (CIFOR), Bogor, Indonesia. https://doi.org/10.17528/cifor/003749

Letouzey R. 1982. Manuel de botanique forestière d’Afrique Tropicale. Livre : Botanique Générale, Tome 1. Centre Technique Forestier Tropical, 2ème édition. France, 1-648.

Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Marie-Noël DK, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KS-H, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Wöll H. 2009. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006. https://doi.org/10.1038/nature07771

Lü X-T, Yin J-X, Jepsen MR, Tang J-W. 2010. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. Forest Ecology and Management 260, 1798–1803. https://doi.org/10.1016/j.foreco.2010.08.024

Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root : shoot ratios in terrestrial biomes. Global Change Biology 12, 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x

Mund M. 2004. Carbon pools of European beech forests ( ) under different silvicultural management. Dissertation, zur Erlangung des Doktorgrades der Fakultät für Forstwissenschaften und Waldökologie der Georg-August-Universität Göttingen. Berichte des Forschungszentrums Waldökosysteme, Reihe A, Band 189, 256 p.

Ngo KM, Turner BL, Muller-Landau HC, Davies SJ, Larjavaara M, Nik Hassan NFB, Lum S. 2013. Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management 296, 81–89. https://doi.org/10.1016/j.foreco.2013.02.004

Page SE, Rieley JO, Banks CJ. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology.

Palace M, Keller M, Hurtt G, Frolking S. 2012. A Review of Above Ground Necromass in Tropical Forests, in: Sudarshana, P. (Ed.), Tropical Forests. InTech. https://doi.org/10.5772/33085

Pearson T, Harris N, Shoch D, Brown S. 2005. A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stock in forests remaining forests, and forestation, 47-70.

Peh KS-H, Sonké B, Lloyd J, Quesada CA, Lewis SL. 2011. Soil Does Not Explain Monodominance in a Central African Tropical Forest. PLoS ONE 6, e16996. https://doi.org/10.1371/journal.pone.0016996

Phillips O, Baker T, Feldpausch T, Brienen R. 2021. RAINFOR Field Manual for Plot Establishment and Remeasurement.

Powers JS, Corre MD, Twine TE, Veldkamp E. 2011. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proceedings of the National Academy of Sciences of the United States of America U.S.A. 108, 6318-6322. https://doi.org/10.1073/pnas.1016774108

R Core Team. 2020. R: Un langage et un environne ment pour le calcul statistique | BibSonomy [WWW Document]. URL  (accessed 7.29.24). https://www.bibsonomy.org/bibtex/7469ffee3b07f9167cf47e7555041ee7

Saint-Laurent D, Gervais-Beaulac V, Paradis R, Arsenault-Boucher L, Demers S. 2017. Distribution of Soil Organic Carbon in Riparian Forest Soils Affected by Frequent Floods (Southern Québec, Canada). Forests 8, 124. https://doi.org/10.3390/f8040124

Suwarna U, Elias E, Darusman D, Istomo I. 2012. Estimation of Total Carbon Stocks in Soil and Vegetation of Tropical Peat Forest in Indonesia. jtfm 18, 118–128. https://doi.org/10.7226/jtfm.18.2.118

Thomas SC, Martin AR. 2012. Carbon Content of Tree Tissues: A Synthesis. Forests 3, 332–352. https://doi.org/10.3390/f3020332

Vashum KT, Kasomwoshi T, Jayakumar S. 2016. Soil organic carbon sequestration potential of primary and secondary forests in Northeast India. Proceedings of the International Academy of Ecology and Environmental Sciences 6(3), 67-74.

Vitt DH, Halsey LA, Bauer IE, Campbell C. 2000. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences 37, 683–693. https://doi.org/10.1139/e99-097

Walker SM, Murray L, Tepe T. 2016. Allometric Equation Evaluation Guidance Document. Winrock International. 75 p.

Warren DR, Keeton WS, Kraft CE. 2008. A comparison of line-intercept and census techniques for assessing large wood volume in streams. Hydrobiologia 598, 123–130. https://doi.org/10.1007/s10750-007-9144-8

Woldendorp G, Keenan RJ, Ryan MF. 2002. Coarse Woody Debris in Australian Forest Ecosystems. A Report for the National Greenhouse Strategy, Module 6.6 (Criteria and Indicators of Sustainable Forest Management), 1-75.

 Yadav RS, Pandya IY, Jangid MS. 2015. Estimating Status of Soil Organic Carbon in Tropical Forests of Narmada Forest Division, Gujarat, India. Int. Res. J. Environment 4(1), 19-23.

Yeboah D, Burton AJ, Storer AJ, Opuni-Frimpong E. 2014. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests 45, 35–52. https://doi.org/10.1007/s11056-013-9390-8

Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Data from: Towards a worldwide wood economics spectrum. https://doi.org/10.5061/DRYAD.234

Zaroug MAH, Sylla MB, Giorgi F, Eltahir EAB, Aggarwal PK. 2013. A sensitivity study on the role of the swamps of southern Sudan in the summer climate of North Africa using a regional climate model. Theor Appl Climatol 113, 63–81. https://doi.org/10.1007/s00704-012-0751-6 

Related Articles

Implications of aberrant glycosylation on age-related disease progression

Tahmid Ahmad Patwary, Mukramur Rahman, Md. Nafis Fuad Prottoy, Sayad Md. Didarul Alam, Int. J. Biosci. 27(2), 176-188, August 2025.

Design and development of solar powered water sprayer: A green technology innovation

Lorenzo V. Sugod, Int. J. Biosci. 27(2), 159-175, August 2025.

Knowledge, attitudes, practices, and social awareness regarding SARS-CoV-2 infection in the kyrgyz population in the post-pandemic period

Mirza Masroor Ali Beg, Haider Ali, Yahya Nur Ahmed, Yavuz Gunduz, Hafsa Develi, Tilekeeva UM, Int. J. Biosci. 27(2), 151-158, August 2025.

Tumor suppressing ability of myrtenal in DMBA-induced rat mammary cancer: A biochemical and histopathological evaluation

Manoharan Pethanasamy, Shanmugam M. Sivasankaran, Saravanan Surya, Raju Kowsalya, Int. J. Biosci. 27(2), 141-150, August 2025.

Assessing tree diversity in cashew plantations: Environmental and agronomic determinants in buffer zones of Mont Sangbé National Park, western Côte d’Ivoire

Kouamé Christophe Koffi, Kouakou Hilaire Bohoussou, Serge Cherry Piba, Naomie Ouffoue, Sylvestre Gagbe, Alex Beda, Adama Tondossama, Int. J. Biosci. 27(2), 122-133, August 2025.

Anthelmintic potential of powdered papaya seed Carica papaya in varying levels against Ascaridia galli in broiler chicken

Roniemay P. Sayson, Mylene G. Millapez, Zandro O. Perez, Int. J. Biosci. 27(2), 114-121, August 2025.

Valorization of fish scale waste for the synthesis of functional gelatin-based biopolymers

N. Natarajan Arun Nagendran, B. Balakrishnan Rajalakshmi, C. Chellapandi Balachandran, Jayabalan Viji, Int. J. Biosci. 27(2), 102-113, August 2025.