Importance of soils when estimating carbon storage in Central African swamp forests
Paper Details
Importance of soils when estimating carbon storage in Central African swamp forests
Abstract
The swamp forests of Central Africa, although little anthropised, could undergo major change in the future. Monitoring spatio-temporal variations in their carbon stocks requires the inclusion of key forest compartments, in particular the soil, which is rarely quantified. The aim of this study was to assess the soil’s contribution to total carbon storage in the three forest types of the swamp forests of the Congolese Cuvette: flooded forest (FF), periodically flooded forest (PFF) and terra firma forest (TFF). Soil samples from the 0-15 cm horizon and measurements of trees (dead and alive) were taken in 41 permanent nested circular plots. Chemical analysis of the soils revealed that organic carbon, total nitrogen, organic matter, pH and C/N increased significantly from TFF to FI. Soil carbon content tended to double from TFF to PFF and from PFF to FF. The C/N ratio < 25 obtained under PFF and TFF indicates normal OM mineralization. A highly significant difference was observed between the total carbon including the soil compartment (400.84±12.12, 420.93±18.77 and 411.49±35.33 tC/ha for FF, PFF and TFF respectively) and that excluding it (313.47±12.42, 406.74±18.38 and 407.29±35.37 tC/ha for FF, PFF and TFF respectively). Including the soil compartment in the total carbon estimate added 4, 14 and 87 tons of carbon for TFF, PFF and FF, respectively. These results show the need to include the amount of soil carbon when estimating the carbon stock of the swamp forest of Central Africa.
Amlin G, Suratman MN, Isa NNM. 2014. Soil Chemical Analysis of Secondary Forest 30 Years after Logging Activities at Krau Wildlife Reserve, Pahang, Malaysia. APCBEE Procedia 9, 75–81. https://doi.org/10.1016/j.apcbee.2014.01.014
ANAC. 2024. Données Météorologique de la région de la Likouala-Données météorologiques du district d’Impfondo pour les 50 dernières années. Base de données annuelles de l’agence nationale de l’aviation civile (ANAC), Ministère de transport et de l’aviation civile, Brazzaville, Congo.
Balloy B, Bispo A, Bouthier A, Chenu C, Cluzeau D, Degan F, Metzger L. 2017. Tour d’horizon des indicateurs relatifs à l’état organique et biologique des sols, 1-61. hal-02788601
Beilman DW, MacDonald GM, Smith LC, Reimer PJ. 2009. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochemical Cycles 23, 2007GB003112. https://doi.org/10.1029/2007GB003112
Betbeder J, Gond V, Frappart F, Baghdadi NN, Briant G, Bartholome E. 2014. Mapping of Central Africa Forested Wetlands Using Remote Sensing, IEEE. J. Sel. Top. Appl. Earth Observations Remote Sensing 7, 531–542. https://doi.org/10.1109/JSTARS.2013.2269733
Bocko YE, Dargie G, Ifo AS, Yoka J, Loumeto JJ. 2016. Répartition spatiale de la richesse floristique des forêts marécageuses de la Likouala, Nord-Congo. Afrique SCIENCE 12(4), 200-212.
Bonhême I, Rousteau A, Imbert D, Saur E. 1998. Forêt marécageuse à Pterocarpus officinalis : sa situation en gouadeloupe. Bois et Forêts des Tropiques, N°258 (4), 59-68.
Campbell CA, VandenBygaart AJ, Grant B, Zentner RP, McConkey BG, Lemke R, Gregorich EG, Fernandez M. 2007. Quantifying carbon sequestration in a conventionally tilled crop rotation study in southwestern Saskatchewan. Canadian Journal of Soil Science 87, 23-38. https://doi.org/10.4141/S06-015
Carlson BS, Koerner SE, Medjibe VP, White LJT, Poulsen JR. 2017. Deadwood stocks increase with selective logging and large tree frequency in Gabon. Global Change Biology 23, 1648-1660. https://doi.org/10.1111/gcb.13453
Chambers FM, Beilman DW, Yu Z. 2011. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics.
Chave J, Olivier J, Bongers F, Châtelet P, Forget P-M, Van Der Meer P, Norden N, Riéra B, Charles-Dominique P. 2008. Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology 24, 355-366. https://doi.org/10.1017/S0266467408005075
Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20, 3177–3190. https://doi.org/10.1111/gcb.12629
Crezee B, Dargie GC, Ewango CEN, Mitchard ETA, Emba BO, Kanyama TJ, Bola P, Ndjango J-BN, Girkin NT, Bocko YE, Ifo SA, Hubau W, Seidensticker D, Batumike R, Imani, G, Cuní-Sanchez A, Kiahtipes CA, Lebamba J, Wotzka H-P, Bean H, Baker TR, Baird AJ, Boom A, Morris PJ, Page SE, Lawson IT, Lewis SL. 2022a. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639-644. https://doi.org/10.1038/s41561-022-00966-7
Crump J (Dir.). 2017. De la fumée sur l’eau – lutter contre les menaces mondiales liées à la destruction et à la dégradation des tourbières. Évaluation du PNUE en vue d’une intervention rapide. Programme des Nations Unies pour l’environnement et GRID-Arendal, Nairobi et Arendal, www.grida.com, 1-76.
Dabin B. 1985. Les sols tropicaux acides. Cah.ORSTOM, sér.Pedol., 21(1), 1984-1985.
Dargie GC, Lawson IT, Rayden TJ, Miles L, Mitchard ETA, Page SE, Bocko YE, Ifo SA, Lewis SL. 2019. Congo Basin peatlands: threats and conservation priorities. Mitig Adapt Strateg Glob Change 24, 669–686. https://doi.org/10.1007/s11027-017-9774-8
Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA. 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90. https://doi.org/10.1038/nature21048
Dinno A. 2015. Nonparametric Pairwise Multiple Comparisons in Independent Groups using Dunn’s Test. The Stata Journal 15, 292-300. https://doi.org/10.1177/1536867X1501500117
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J. 1994. Carbon Pools and Flux of Global Forest Ecosystems. Science 263, 185–190. https://doi.org/10.1126/science.263.5144.185
Djomo AN, Knohl A, Gravenhorst G. 2011. Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. Forest Ecology and Management 261, 1448–1459. https://doi.org/10.1016/j.foreco.2011.01.031
Dommain R, Couwenberg J, Joosten H. 2011. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quaternary Science Reviews 30, 999-1010. https://doi.org/10.1016/j.quascirev.2011.01.018
Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci 4, 293–297. https://doi.org/10.1038/ngeo1123
Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Honorio Coronado EN, Lähteenoja O, Torres Montenegro L, Valderrama Sandoval E, Zaráte R, Baker TR. 2014. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017. https://doi.org/10.1088/1748-9326/9/12/124017
Ekoungoulou R, Niu S, Loumeto JJ, Ifo AS, Bocko YE, Mikieleko KEF, Guiekisse MDE, Senou H, Liu X. 2015. Evaluating the Carbon Stock in Above-and Below- Ground Biomass in a Moist Central African Forest. Applied Ecology and Environmental Sciences 3(2), 51-59. https://doi.org/10.12691/aees-3-2-4.
FAO-UNESCO. 1975. Carte mondiale des sols (1/5000000). Volume I, Unesco- Paris, 68.
Gautam S, Pietsch SA. 2012. Carbon pools of an intact forest in G abon. African Journal of Ecology 50, 414–427. https://doi.org/10.1111/j.1365-2028.2012.01337.x
Harmon ME, Sexton J. 1996. Guidelines for Measurements of Woody Detritus in Forest Ecosystems. Publication No. 20. U.S. LTER. Network Office : University of Washington, Seatle, WA, USA, p 73.
Hribljan JA, Suárez E, Heckman KA, Lilleskov EA, Chimner RA. 2016. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetlands Ecol Manage 24, 113–127. https://doi.org/10.1007/s11273-016-9482-2
Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, Sheil D, Sonké B, Sullivan MJP, Sunderland TCH, Taedoumg H, Thomas SC, White LJT, Abernethy KA, Adu-Bredu S, Amani CA, Baker TR, Banin LF, Baya F, Begne SK, Bennett AC, Benedet F, Bitariho R, Bocko YE, Boeckx P, Boundja P, Brienen RJW, Brncic T, Chezeaux E, Chuyong GB, Clark CJ, Collins M, Comiskey JA, Coomes DA, Dargie GC, De Haulleville T, Kamdem MND, Doucet J-L, Esquivel-Muelbert A, Feldpausch TR, Fofanah A, Foli EG, Gilpin M, Gloor E, Gonmadje C, Gourlet-Fleury S, Hall JS, Hamilton AC, Harris DJ, Hart TB, Hockemba MBN, Hladik A, Ifo SA, Jeffery KJ, Jucker T, Yakusu EK, Kearsley E, Kenfack D, Koch A, Leal ME, Levesley A, Lindsell JA, Lisingo J, Lopez-Gonzalez G, Lovett JC, Makana J-R, Malhi Y, Marshall AR, Martin J, Martin EH, Mbayu FM, Medjibe VP, Mihindou V, Mitchard ETA, Moore S, Munishi PKT, Bengone NN, Ojo L, Ondo FE, Peh KS-H, Pickavance GC, Poulsen AD, Poulsen JR, Qie L, Reitsma J, Rovero F, Swaine MD, Talbot J, Taplin J, Taylor DM, Thomas DW, Toirambe B, Mukendi JT, Tuagben D, Umunay PM, Van Der Heijden GMF, Verbeeck H, Vleminckx J, Willcock S, Wöll H, Woods JT, Zemagho L. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87. https://doi.org/10.1038/s41586-020-2035-0
Ifo AS, Koubouana F, Jourdain C, Nganga D. 2015. Stock and Flow of Carbon in Plant Woody Debris in Two Different Types of Natural Forests in Bateke Plateau, Central Africa. OJF 05, 38–47. https://doi.org/10.4236/ojf.2015.51005
Ifo SA, Koubouana F, Binsangou S, Parfait A, Marcelle B. 2017. Amount of Soil Carbon Stock within Primary and Secondary Forest in the North of the Republic of Congo. SE 2, 159. https://doi.org/10.22158/se.v2n2p159
IPCC. 2008. 2006 IPCC Guidelines for National Greenhouse Gas Inventories- A primer, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and Tanabe K. (eds). Published: IGES, Japan. p 20.
Jeyanny V, Husni M, Rasidah KW, Kumar BS, Arifin A, Hisham MK. 2014. Carbon stocks in different carbon pools of a tropical lowland forest and a montane forest with varying topography. Journal of Tropical Forest Science 26(4), 560-571.
Kauffman JB, Bhomia RK. 2017. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS ONE 12(11), 1-17, e0187749. https://doi.org/10.1371/journal.pone.0187749
Kauffman JB, Donato D. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper 86. Center for International Forestry Research (CIFOR), Bogor, Indonesia. https://doi.org/10.17528/cifor/003749
Letouzey R. 1982. Manuel de botanique forestière d’Afrique Tropicale. Livre : Botanique Générale, Tome 1. Centre Technique Forestier Tropical, 2ème édition. France, 1-648.
Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Marie-Noël DK, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KS-H, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Wöll H. 2009. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006. https://doi.org/10.1038/nature07771
Lü X-T, Yin J-X, Jepsen MR, Tang J-W. 2010. Ecosystem carbon storage and partitioning in a tropical seasonal forest in Southwestern China. Forest Ecology and Management 260, 1798–1803. https://doi.org/10.1016/j.foreco.2010.08.024
Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root : shoot ratios in terrestrial biomes. Global Change Biology 12, 84–96. https://doi.org/10.1111/j.1365-2486.2005.001043.x
Mund M. 2004. Carbon pools of European beech forests ( ) under different silvicultural management. Dissertation, zur Erlangung des Doktorgrades der Fakultät für Forstwissenschaften und Waldökologie der Georg-August-Universität Göttingen. Berichte des Forschungszentrums Waldökosysteme, Reihe A, Band 189, 256 p.
Ngo KM, Turner BL, Muller-Landau HC, Davies SJ, Larjavaara M, Nik Hassan NFB, Lum S. 2013. Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management 296, 81–89. https://doi.org/10.1016/j.foreco.2013.02.004
Page SE, Rieley JO, Banks CJ. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology.
Palace M, Keller M, Hurtt G, Frolking S. 2012. A Review of Above Ground Necromass in Tropical Forests, in: Sudarshana, P. (Ed.), Tropical Forests. InTech. https://doi.org/10.5772/33085
Pearson T, Harris N, Shoch D, Brown S. 2005. A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stock in forests remaining forests, and forestation, 47-70.
Peh KS-H, Sonké B, Lloyd J, Quesada CA, Lewis SL. 2011. Soil Does Not Explain Monodominance in a Central African Tropical Forest. PLoS ONE 6, e16996. https://doi.org/10.1371/journal.pone.0016996
Phillips O, Baker T, Feldpausch T, Brienen R. 2021. RAINFOR Field Manual for Plot Establishment and Remeasurement.
Powers JS, Corre MD, Twine TE, Veldkamp E. 2011. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proceedings of the National Academy of Sciences of the United States of America U.S.A. 108, 6318-6322. https://doi.org/10.1073/pnas.1016774108
R Core Team. 2020. R: Un langage et un environne ment pour le calcul statistique | BibSonomy [WWW Document]. URL (accessed 7.29.24). https://www.bibsonomy.org/bibtex/7469ffee3b07f9167cf47e7555041ee7
Saint-Laurent D, Gervais-Beaulac V, Paradis R, Arsenault-Boucher L, Demers S. 2017. Distribution of Soil Organic Carbon in Riparian Forest Soils Affected by Frequent Floods (Southern Québec, Canada). Forests 8, 124. https://doi.org/10.3390/f8040124
Suwarna U, Elias E, Darusman D, Istomo I. 2012. Estimation of Total Carbon Stocks in Soil and Vegetation of Tropical Peat Forest in Indonesia. jtfm 18, 118–128. https://doi.org/10.7226/jtfm.18.2.118
Thomas SC, Martin AR. 2012. Carbon Content of Tree Tissues: A Synthesis. Forests 3, 332–352. https://doi.org/10.3390/f3020332
Vashum KT, Kasomwoshi T, Jayakumar S. 2016. Soil organic carbon sequestration potential of primary and secondary forests in Northeast India. Proceedings of the International Academy of Ecology and Environmental Sciences 6(3), 67-74.
Vitt DH, Halsey LA, Bauer IE, Campbell C. 2000. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences 37, 683–693. https://doi.org/10.1139/e99-097
Walker SM, Murray L, Tepe T. 2016. Allometric Equation Evaluation Guidance Document. Winrock International. 75 p.
Warren DR, Keeton WS, Kraft CE. 2008. A comparison of line-intercept and census techniques for assessing large wood volume in streams. Hydrobiologia 598, 123–130. https://doi.org/10.1007/s10750-007-9144-8
Woldendorp G, Keenan RJ, Ryan MF. 2002. Coarse Woody Debris in Australian Forest Ecosystems. A Report for the National Greenhouse Strategy, Module 6.6 (Criteria and Indicators of Sustainable Forest Management), 1-75.
Yadav RS, Pandya IY, Jangid MS. 2015. Estimating Status of Soil Organic Carbon in Tropical Forests of Narmada Forest Division, Gujarat, India. Int. Res. J. Environment 4(1), 19-23.
Yeboah D, Burton AJ, Storer AJ, Opuni-Frimpong E. 2014. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests 45, 35–52. https://doi.org/10.1007/s11056-013-9390-8
Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Data from: Towards a worldwide wood economics spectrum. https://doi.org/10.5061/DRYAD.234
Zaroug MAH, Sylla MB, Giorgi F, Eltahir EAB, Aggarwal PK. 2013. A sensitivity study on the role of the swamps of southern Sudan in the summer climate of North Africa using a regional climate model. Theor Appl Climatol 113, 63–81. https://doi.org/10.1007/s00704-012-0751-6
Yannick Enock Bocko, Greta Christina Dargie, Suspense Averti Ifo, Jean Joël Loumeto, Simon L. Lewis, 2025. Importance of soils when estimating carbon storage in Central African swamp forests. Int. J. Biosci., 27(1), 8-20.
Copyright © 2025 by the Authors. This article is an open access article and distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY 4.0) license.