In vitro assessment of the role of carbohydrates on the coffee’s resistance against coffee berry disease caused by Colletotrichum kahawae

Paper Details

Research Paper 01/03/2020
Views (203) Download (18)
current_issue_feature_image
publication_file

In vitro assessment of the role of carbohydrates on the coffee’s resistance against coffee berry disease caused by Colletotrichum kahawae

Kacko Agripine, Mouen bedimo Joseph Aubert, Cilas Christian, Niemenak Nicolas
Int. J. Biosci.16( 3), 451-460, March 2020.
Certificate: IJB 2020 [Generate Certificate]

Abstract

The coffee berry disease (CBD) of Coffea arabica caused by Colletotrichum kahawae is responsible for 80 % loss of coffee production in Cameroun. In order to assess the possible implication of carbohydrates in the defence of Coffea arabica against Colletotrichum kahawae, comparative analyses (qualitative and quantitative) of soluble sugars contents was done after inoculation on berries. The berries of two cultivars java and caturra were recorded at 22nd and 25th weeks after flowering (WAF) from the field. The influence of culture conditions of coffee trees in situ (full sunlight and under shade), the age of the berries at the time of inoculation were discussed. Additionally, the composition and the content of soluble sugars were analysed. The result showed that the infection rate was significantly high on the berries collected at the 22nd (WAF) compared to those collected at the 25th WAF. Qualitative analyse showed only the presence of glucose. The highest glucose content was obtained from the berries of java variety exposed on full sunlight while the lowest content being observed from the berries of caturra variety under shade (2.96 ± 0.42 mg/g against 0.75 ± 0.03 mg/g respectively). No significant different in sugar content was observed between infected and no infected berries inside the two varieties of coffee. However, the java variety showed a high accumulation of glucose compared to caturra variety. These results support a positive implication of sugar in the interaction between coffee berries and Colletotrichum hahawae since a high accumulation of sugar was observed in java variety the resistant cultivar.

VIEWS 10

Andrew JL, Thomas M, Graham AI, Milner JJ. 2005.Carbohydrate partitioning and sugar signalling in cauliflower mosaic virus-infected turnip and Arabidopsis. Physiological and Molecular Plant Pathology 67, 83 -91.  https://doi.org/10.1016/j.pmpp.2005.09.007

Ayres PP, Press MC, Spencer PTN. 1996. Effects of pathogens and parasitic plants on source-sink relationships. In: Photoassimilate Distribution in Plants and Crops. (E. Zamski, A.A. Schaffer, ed.), Marcel Dekker, New York, NY, USA, 479–499.

Bella Manga. 1999. Etude de la diversité de Colletotrichum kahawae, responsable de l’anthracnose des baies et caractérisation de la résistance du caféier Arabica à cet agent. Thèse de doctorat, Université de Montpellier 2, p 149.

Bieysse D, Bella M, Mouen Bedimo JA, Ndeumeni JP, Roussel V, Fabre JV, Berry D. 2002. L’anthracnose des baies, une menace potentielle pour la culture mondiale de l’arabica. Plantation-Recherche-Développement. Recherche et Caféiculture. Cirad-CP, Montpellier, France, 144 – 152.

Bolouri Moghaddam MR, Van den Ende W. 2012. Sugars and plant innate immunity. Journal of Experimental Botany 63(11), 3989 – 3998. https://doi:10.1093/jxb/err313

Bolouri Moghaddam MR, Van den Ende W. 2013. Sweet immunity in the plant circadian regulatory network. Journal of Experimental Botany 64(6), 1439 – 1449. https://doi.org/10.1093/jxb/ert046

Bouharmont P. 1992. Sélection de la variété java et son utilisation pour la régénération de la caféière arabica au Cameroun. In: Café Cacao Thé 36(4), 247 – 262. https://agritrop.cirad.fr/396701/

Djocgoue PF, Mbouobda DH, Boudjeko PO, Effa, Omokolo DN. 2011. Amino acids carbohydrates and heritability of resistance in the Threobroma cacao/ Phythophthora megakarya interaction. Phytopathology Mediterranee 50, 370 – 383.

Evers D, Dommes J, Hausman JF. 2003. Carbohydrates and resistance to Phytophthora infestans in potato plants. Acta Physiologiae Plantarum. 25, 171-178 Falconer DS, ed. 1974. Introduction à la Génétique Quantitative. Masson, Paris, France. http://dx.doi.org/10.1007/s11738-003-0050-z

Gadisa G. 2016. A review on the status of Coffea Berry Disease (Colletotrichum kahawae). In Ethiopia Journal of Biology. Agriculture and Healthcare 19 (6), 2224–3208.

Garedew G, Fikre L, Pinard F. 2017. Assessement of berry drop due to coffee disease and non – CBD factors in Arabica coffee under farmers’ fields of South western Ethipia. Crop Protection 98, 276-282. http://dx.doi.org/10.1016/j.cropro.2017.04.012

Herbers K, Sonnewald U. 1996. Manipulating metabolic partitioning in transgenic plants. Trends Biotechnology 14, 198-205. https://doi.org/10.1016/0167-7799(96)10027-5

Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteille M, Stitt M, Gibon Y, Muller B. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiology 154, 357 – 372. http://dx.doi.org/10.1104/pp.110.157008. Epub 2010 Jul 14

ICO. 2007. Statistique, International Coffee Organization. http://dev.ico.org/prices/ml.htm

Massaba D, Waller JM. 1992. Coffe berry disease: The current statut. Pages 237-249 in: Colletotrichum: Biology, Pathology and Control. Baley JA, Jeger MJ. eds. CAB International, Wallingford, UK. http://dx.doi.org/10.13140/RG.2.1.4247.3205

Morkunas I, Ratajczak L. 2014. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologia Plantarum 36, 1607-1619. https://doi.org/10.1007/s11738-014-1559-z

Mouen Bedimo JA, Bieysse D, Njiayouom I, Deumeni JP, Cilas C, Nottéghem JL. 2007. Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. European Journal of Plant Pathology 119, 391- 400. https://doi.org/10.1007/s10658-007-9169-x

Mouen Bedimo JA, Cilas C, Nottéghem JL, Bieysse D. 2012. Effect of temperature and rainfall variation on the development of coffee berry disease caused by Colletotrichum kahawea. Crop Protection 31, 125 – 131.

Mouen Bedimo JA, Njiagouom I, Bieysse D, Ndoumbè Nkeng M, Cilas C, Nottèghem JL. 2008. Effect of shade on Arabica Coffee Berry Disease Development: Toward an agroforestry system to reduce disease impact. Phytopatology 98, 1320-1325. https://doi.org/10.1094/PHYTO-98-12-1320

Mouen Bedimo JA. 2006. Thèse de Doctorat de l’école Nationale Supérieure Agronomique de Montpellier: Dynamique spatio-temporelle de l’anthracnose des baies du Caféier arabica due à Colletotrichum kahawae au Cameroun: analyse des principaux facteurs déterminants de la maladie. P 150.

Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y. 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany 62, 1715 – 1729. https://doi.org/10.1093/jxb/erq438

Nicholson RL. 1992. Colletotrichum graminicola and the anthracnose diseases of maize and sorghum. In Colletotrichum: Biology, Pathology, and Control. Bailey JA, Jeger MJ. eds. CAB International, Wallingford, U.K., p 186 – 202.

OIC. 2018. Organisation International du Café. Le rapport sur le marché du café, 7 p. www.ico.org

Omokolo ND, Boudjeko T. 2005. Comparative analyses of alteration in carbohydrates, amino acids, phenols and lignin in roots of three cultivars of Xanthosoma sagittifolium (macabo) infected by Pythium myriotylum. South African Journal of Botany 71, 432 -440.

Phiri NA, Hillocks RJ, Jeffries P. 2001. Incidence and Severity of Coffee Disease in Smallholder Plantations in Northern Malawi. Crop Protection 20, 325 – 332. https://doi.org/10.1016/S0261-2194(00)00161-7

Pinard F, Omondi CO, Cilas C. 2012. Detached berries inoculation for characterization of coffee resistance to Coffee Berry disease. Journal of Plant Pathology 94(3), 517 -523.

Prusky D, Plumbley RA. 1992. Quiescent infections of Colletotrichum in tropical and subtropical fruits. In: Bailey JA, Jeger MJ. eds. Colletotrichum: Biology, Pathology and Control. CABI International, Wallinford, UK, p 388.

Regazzoni N, Mouen Bedimo JA, Bar-Hen A, Berry D, Cilas C. 1997. Mise au point de protocoles de traitements contre l’anthracnose des baies (CBD) du caféier Arabica au Cameroun. ASIC, 17e colloque, Nairobi, 708–713.

Shalitin DY, Wang A, Omid A, Gal-on, Wolf S. 2002. Cucumber mosaic virus movement protein affects sugar metabolism and transport in tobacco and melon plants. Plant Cell and Environment 25, 989–997. https://doi.org/10.1046/j.1365-3040.2002.00888.x

Tihominova K, Dalecka, Mezule L. 2016. Application of conventional HPLC – RI technique for sugar analysis in hydrolysed hay. Agronomy Research 14(5), 1713 – 1719.

Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M. 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front. Plant Science 4, 1-14. https://dx.doi.org/10.3389%2Ffpls.2014.00592

Waller JM, Bridge PD, Black R, Hariza G. 1993. Characterization of the coffee berry disease pathogen, Colletotrichum kahawae Sp. nov. Mycological Research 97(8), 989 – 994.

Zufferey V, Murisier F, Vivian P, Belcher S, Lorenzini F, Spring JL, Viret O. 2012. Reserves en glucides de la vigne (cv. Chasselas): Influence du rapport feuille – fruit. Revue Suisse Viticulture, Arboriculture, Horticulture 44(4), 216-224.