Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | April 1, 2016

VIEWS 3
| Download 2

In vitro selection of phosphate solubilizing strains of Trichoderma spp.

Dorcas Zúñiga-Silgado

Key Words:


Int. J. Biosci.8(4), 124-144, April 2016

DOI: http://dx.doi.org/10.12692/ijb/8.4.124-144

Certification:

IJB 2016 [Generate Certificate]

Abstract

Phosphorous (P) is considered to be the macronutrient with the lowest availability for plants in the majority of tropical soils, and is thus a limiting factor for vegetal growth. The application of Phosphoric Rock (PR) has been widely studied in order to satisfy its requirement in crops, but the quantity of liberated P is too low to satisfy demand. A viable alternative for managing this problem is the use of rhizospheric microorganisms that solubilize P (PSM) in chemically unavailable forms. In the search for microorganisms that solubilize phosphates, studies report that Trichoderma spp., in addition to their effects as pathogen biocontrollers, also exhibit phosphodissolvent capacities. The objective of this investigation was to evaluate in vitro strains of Trichoderma spp. isolated from rhizospheres of beans and corn with phosphate solubilizing abilities. Different strains of Trichoderma were isolated and selected from rhizospheric soil and rhizospheres. Three medium types were evaluated utilizing both solid and liquid media in order to determine their biometric characteristics, relative efficiency of solubilization of PR, bioacidulant capacity of the culture medium, and concentration of P in solution. In liquid media, these fungi were inoculated with and without PR, the quantity of soluble P was quantified, and the pH was taken. There were significant differences with respect to mycelial growth between solid media with and without the presence of PR, solubilization halos, and relative efficiency of solubilization in relation to incubation time. Liquid media with and without PR showed significant differences with respect to the quantity of soluble P. The pH of these media was inversely proportional to the quantity of soluble P, as the probable principle mechanism of dissolution of PR is the production of organic acids.

 

VIEWS 3

Copyright © 2016
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

In vitro selection of phosphate solubilizing strains of Trichoderma spp.

Abd-Alla MH. 1994. Use of organic phosphorus by Rhizobium leguminosarum iovar. Viceae phosphatases. Biology and Fertility of Soils 18, 216-218.http://dx.doi.org/10.1007/BF00647669

Ahmad AA, Muhammad Z, Saima S, Muhammad N. 2011. Comparative effectiveness of Pseudomonas  and  Serratia  sp.  Containing ACC- deaminase for coinoculation with Rhizobuim leguminosarum to improven growth, nodulation, and yield of lentil. Biology and Fertility of Soils 47, 457-465. http://dx.doi.org/10.1007/s00374-011-0551-7

Altomare C, Norvell WA, Björkman T, Harman GE. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65(7), 2926-2933.

Anacona AC, Sabogal SR. 2002. Efecto de diferentes tamaños de claro experimental sobre el proceso de sucesión en un pastizal del embalse San Rafael (La Calera- Cundinamarca). Acta Biológica Colombiana 2(2), 59-60.

Bar-Yosef B, Rogers RD, Wolfram JH, Richman E. 1999. Pseudomonas cepacia mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal 63, 1703-1708. http://dx.doi.org/10.2136/sssaj1999.6361703x

Bolan NS, Naidu R, Mahimairaja S, Baskaran S. 1994. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biology and Fertility of Soils 18, 311-319.

Börkman T, Blanchard LM, Harman GE. 1998. Growth enhancement of shrunfen-2 (sh2) Sweet Corn by Trichoderma harzianum 1295-22: Effect of Environmental Stress. Journal of the American Society for Horticultural Science 123(1), 35-40.

Boul SW, Eswaran H. 2000. Oxisols. Advances in Agronomy 68, 151-195.

Caipo ML, Duffy S, Zhao L, Schaffner DW. 2002. Bacillus megaterium spore germination is influenced by inoculum size. Journal of Applied Microbiology 92, 879-884. http://dx.doi.org/10.1046/j.1365-2672.2002.01597.x

Calich VL, Purchio A, Paula CR. 1979. A new fluorescent viability test for fungi cells. Mycopathologia 66, 175-177. http://dx.doi.org/10.1007/BF00683967

Calderia AT, Feio SS, Arteiro JM, Coelho AV, Roseiro JC. 2008. Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. Journal of applied microbiology 104, 808-816.

Calvo AM. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genetics Biology 45, 689-701.

Cappuccino G, Sherman N. 1998. Microbiology: A laboratory Manual. CA: Benjamin/Cumming Science Publishing.

Carlile MJ, Watkinson SC, Gooday GW. 2001. The Fungi. Academic Press, Great Britain. 588 p.

Cepeda ML, Gamboa AM. 2001. Hongos solubilizadores de fosfato aislados de rizósfera de Espeletia grandiflora Humb. Y Bonpl. (Páramo El Granizo-Monserrate) y su efecto sobre la disponibilidad de fósforo en el suelo. Trabajo de Grado. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biologia. Bogotá.

Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess W, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechonlogy 25. http://dx.doi.org/1007-1014. 10.1038/nbt1325

Chigineva NI, Aleksandrova AV, Marshan S, Kandeler E, Tiunov AV. 2011. The importance of mycelial connection at the soil-litter interface for nutrient translocation, enzyme activity and litter decomposition. Applied Soil Ecology 51, 35–41. http://dx.doi.org/10.1016/j.apsoil.2011.08.009

Chun-Chao C, Yu-Lin K, Chen-Ching C, Wei-Liang C. 2007. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biology and Fertility of Soils 43, 575-584. http://dx.doi.org/10.1007/s00374-006-0140-3

Collados CC. 2006. Impacto de inoculantes basados en Azospirillum modificados genéticamente sobre la diversidad y actividad de los hongos de la micorriza arbuscular en rizosfera de trigo y maíz. Tesis Doctoral. Universidad de Granda. Facultad de Ciencias. Departamento de Microbiología. España.

Dandurand L, Knudsen G. 1993. Influence of Pseudomonas fluorescent on hyphal growth and biocontrol activity of Trichoderma harzianum in the spermosphere and rhizosphere of pea. Phytopathology 83(3), 265-270. http://dx.doi.org/10.1094/Phyto-83-265

de Freitas JR, Banerjee MR, Germida JJ. 1997. Phosphate solubilizing rhizobacteria enhance the growth and yeild but not phosphorus uptake of canola (Brassica napus), Biology and Fertility of Soils 24, 358-364.

Dixon JB, Weed SB. 1989. Minerals in soil environments, Second edition. Soil Science Society of America, Madison, Wisconsin, USA. 1244 P.

Entz MH, Guilford R, Gulden R. 2001. Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern Great Plains. Canadian Journal of Plant Science 81, 351– 354. http://dx.doi.org/10.2134/agronj2001.933495x

Flach EN, Quak W, Van Diest A. 1987. A comparison of the rock phosphate-mobilizing capacities of various crop species. Trop Agric (Trinidad) 64, 347– 352.

Fontes MP, Weed SB.1996. Phosphate adsorption by  clays  from  Brazilian  Oxisols  relationships  with specific surface area and mineralogy. Geoderma 72, 37-51. http://dx.doi.org/10.1016/0016-7061(96)00010-9

Garbera P, Van Veen JA, Van Elsas JD. 2003. Predominant Bacillus spp. In agricultural soil under different management regimes detect via PCR-DGGE. Microbial Ecology 45, 302-316.

Godes A. 2007. Perspectivas de los inoculantes fúngicos en Argentina. pp. 11-14. En: Izaguirre-Mayoral, M.L., C. Labandera y J. Sanjuán (eds.). Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Imprenta Denad Internacional, Montevideo.

Gómez-Guiñán Y, Zabala M. 2001. Determinación de la capacidad solubilizadora del P en hongos aislados de la rizósfera del maní (Arachis hypogea L.). Saber 13, 8-13.

Gregory PJ. 2006. Roots, rhizosphere and soil: the route to a better understanding of soil science? European Journal of Soil Science 57, 2-12. http://dx.doi.org/10.1111/j.1365-2389.2005.00778.x

Guppy CN, Menzies NW, Blamey FPC, Moody P. 2005. Do decomposing organic matter residues reduce phosphorus sorption in highly wathered soil?. Soil Science Society of America Journal 69, 1405-1411 http://dx.doi.org/10.2136/sssaj2004.0266

Gyaneshwar P, Naresh KG, Parekh LJ. 1998. Effect of buffering on the phosphate-solubilizing ability of microorganisms. World Journal of Microbiology and Biotechnology 14, 669-673. http://dx.doi.org/10.1023/A:1008852718733

Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93. http://dx.doi.org/ 10.1023/A:102066391625

Habte M, Osorio NW. 2001. Arbuscular Mycorrhizas: Producing and applying Arbuscular Mycorrhizal Inoculum. Honolulu: University of Hawaii. 47.

Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK. 1990. Solubilization of rock phosphate by rhizobium and bradyrhizobium. The Journal of General and Applied Microbiology 36, 81-92.

He ZL, Zhu J. 1997. Transformation and bioavailability of specifically sorbed phosphate on varaiable-carge mineral soils. Biology and Fertility of Soils 25, 175-181. http://dx.doi.org/ 10.1007/s003740050300

He ZL, Zhu J. 1998. Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biology and Biochemistry 30, 917-923.

Hernández JL, Sánchez MI, García JG, Mayek N, González JM, Quiroz JDC. 2011. Caracterización molecular y agronómica de aislados de Trichoderma spp., nativos del noreste de México. Revista Colombiana de Biotecnología 12(2), 176-185.

Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87, 4-10. http://dx.doi.org/10.1094/PDIS.2003.87.1.4

Hoyos-Carvajal LM. 2008. Evaluación de aislamientos de Trichoderma spp. contra Rhizoctonia solani y Sclerotium rolfsii bajo condiciones in vitro y de invernadero. Agronomia Colombiana.

Ilmer P, Schinner F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry 24, 389-395.

Iyamuremye F, Dick RP. 1996. Organic amendments and phosphorus sorption by soils. Advances in Agronomy 56, 139-185.

Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135, 575-585. http://dx.doi.org/10.1046/j.1469-8137.1997.00729.x

Kamal S, Ajay KM, Raj SM. 2009. Morphological, Biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. Journal of Phytopathology 157, 51 -56. http://dx.doi.org/10.1111/j.1439-0434.2008.01451.x

Kim KY, McDonald GA, Jordan D. 1997. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils 24, 347-352. http://dx.doi.org/10.1007/s003740050256

Kirkby EA, Johnston E. 2008. Soil and fertilizer phosphorus in relation to crop nutrition. En: The ecophysiology of plant-phosphorus interactions. 177-223. P.J. White and J.P. Hammond (Eds.) © Springer Science. 296 p. http://dx.doi.org/10.1007/978-1-4020-8435-5_9

Kloepper JW. 1993. Plant Growth Promoting Rhizobacteria as Biological Control Agents. En: F. B. Metting (Ed), Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., New York, USA.

Knox OGG, Killham K, Leifert C. 2000. Effects of increased nitrate availability on the control of plantpathogenic fungi by the soil bacterium Bacillus subtilis. Applied Soil Ecology 15, 227-231. http://dx.doi.org/10.1016/S0929-1393(00)00098-6

Kozlova OV, Egorov SY, Kupriyanova-Ashina FG. 2010. The Relationship between cellular and calcium responses of Aspergillus awamori to external influences. Microbiology 79, 294-299. http://dx.doi.org/10.1134/S0026261710030033

Kucey RMN. 1983. Phosphate-solubilising bacteria and fungi in various cultivated and virgin Alberta soil. Canadian Journal of Plant Science 63, 671678. http://dx.doi.org/10.4141/cjss83-068

Londoño. 2010. Efecto de la inoculación con un hongo micorrizal y un hongo solubilizador de fósforo en la absorción de fosfato y crecimiento de Leucaena leucocephala en un oxisol. Trabajo de Grado. Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias. Departamento de Biología. Medellín.

Lins ID, Cox FR. 1989. Effect of extractant and select soil properties on predicting the correct phosphorus fertilization of soybean. Soil Sciences 53,813-816. http://dx.doi.org/10.2136/sssaj1989.03615995005300030031x

Lynch JP, Brown KM. 2008. Root strategies for phosphorus acquisition. En: The ecophysiology of plantphosphorus interactions. 83-116 P. P.J. White, J.P. Hammond (Eds.) © Springer Science. http://dx.doi.org/10.1007/978-1-4020-8435-5_5

Marschner P. 2008. The role of rhizosphere microorganisms in relation to P uptake by plants. En: The ecophysiology of plant-phosphorus interactions. 165-176 P. P.J. White and J.P. Hammond (Eds.) © Springer Science. 296 p. http://dx.doi.org/10.1007/978-1-4020-8435-5_8

Martinez SM, Martinez GA. 2000. Efects of Phosphate Solubilization Bacteria During the Rooting Period of SUGAR Cane (Saccharum offinarum), Venezuela 5171 Variety, on the Grower`s Oasis Substrate. Soil and Plant Nutrition 49, 2-9.

Mathews CK, Van Holde KE, Ahern KG. 2002. Biochemistry. Third edition. Benjamin Cummings, San Francisco. 1186 p.

Mc Spadden Gardener, 2004. Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. Symposium: The Nature and Application of Biocontrol Microbes: Bacillus spp. Phytophathology 94(11), 1252-1258. http://dx.doi.org/10.1094/PHYTO.2004.94.11.1252

Moreno-Sarmiento  N,  Moreno-Rodríguez  L, Uribe- Vélez D. 2007. Biofertilizantes para la agricultura en Colombia. 38-45. En: Izaguirre-Mayoral, M.L., C. Labandera y J. Sanjuán (eds.). Biofertilizantes en Iberoamérica: una visión técnica, científica y empresarial. Imprenta Denad Internacional, Montevideo.

Mosley MJ, Pitt D, Barnes JC. 1989. Adenine and pyridine nucleotide levels during calcium-induced conidiation in Penicillium notatum. Antonie van Leeuwenhoek 56, 191-199. http://dx.doi.org/10.1007/BF00399982

Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chimica. Acta 27, 31-35. http://dx.doi.org/10.1016/S0003-2670(00)88444-5

Nahas, E. 1996. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology 12, 567-572. http://dx.doi.org/10.1007/BF00327716

Nahas E. 2007. Phosphate solubilizing microorganism: Effect of carbon, nitrogen and phosphorus sources. In: Velázquez,    E.,and    C. Rodríguez-Barruco (eds). First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences 102. Springer, The Netherlands. 111-115. http://dx.doi.org/10.1007/978-1-4020-5765-6_15

Ñústez E, Acevedo JC. 2005. Evaluación del uso de Penicillium janthinellum Biourge sobre la eficiencia de la fertilización fosfórica en el cultivo de la papa (Solanum tuberosum L. var. Diacol Capiro). Agronomía Colombiana 23(2), 290-298.

Ocampo BM, Patiño LF, Marín MA, Salazar M, Gutiérrez P. 2012. Isolation and characterization of potential phytase-producing fungi from environmental samples of Antioquia (Colombia). Revista de la universidad Nacional de la Facultad de Agronomía 65, 6291-6303.

Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mader P, Roth H, Frossard E. 2002. Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutrient Cycling in Agroecosystems 62, 25– 35.

Osorio NW. 2008. Effectiveness of microbial solubilization of phosphate in enhancing plant phosphate uptake in tropical soils and assessment of the mechanisms of solubilization. Ph.D. Disertation. University of Hawaii, Honolulu, 392 p.

Osorio NW. 2011. Effectiveness of phosphate solubilizing microorganisms in increasing plant phosphate uptake and growth in tropical soils. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management Volume III. Springer, Berlin, 65–80. http://dx.doi.org/10.1007/978-3-642-21061-7_4

Osorno LB. 2013. Bio-acidulación de roca fosfórica bajo condiciones in vitro. Tesis de Maestría. Universidad Nacional de Colombia Sede Medellín.

Osorno L, Osorio N. 2014. Effect of Carbon and Nitrogen Source and Concentration on Rock Phosphate Dissolution Induced by Fungi.Journal of Applied Biotechnology 2(2), 32-42. http://dx.doi.org/10.5296/jab.v2i2.5475

Pandey A, Das N, Kumar B, Rinu K, Trivedi P.. 2008. Phosphate solubilization by Penicillium spp. Isolated from soil samples of Indian Himalayan region. World Journal of Microbiology and Biotechnology 24, 97-102. http://dx.doi.org/10.1007/s11274-007-9444-1

Pradhan N, Sukla L B. 2005. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African Journal of Biotechnology 5, 850-854.

Prescott   LM,    Harley   JP,    Klein   DA.   2004. Microbiología 5 ed. McGraw-Hill Interamericana. 1240 p.

Reva ON, Dixelius C, Meijer J, Priest FG. 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS microbiology ecology 48, 249-259. http://dx.doi.org/10.1016/j.femsec.2004.02.003

Reyes I, Bernier L, Antoun H. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microbial Ecology 44(1), 39-48.

Reyes I, Bernier L, Simard RR, Antoun H.. 1999a. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. Microbial Ecology 28, 281-290. http://dx.doi.org/10.1111/j.15746941.1999.tb00583.x

Richardson AE. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28, 897–906.

Rodríguez H, Fraga R. 1999. Phosphate Solubilizing Bacteria and their Role in Plant Growth Promotion. Biotechnology Advances 17, 319-339.

Rodríguez H, Fraga R, Gonzalez T, Bashan Y. 2006. Genetics of phosphate solubilization and its potential application for improving plant growth-promoting bacteria. Plant and Soil 287, 15–21. http://dx.doi.org/10.1007/978-1-4020-5765-6_2

Rodriguez H, Gonzalez T, Goire I, Bashan Y. 2004. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91, 552–555. http://dx.doi.org/10.1007/s00114-004-0566-0

Rodríguez N, Rubiano ME. 2002. Aislamiento e identificación de hongos de fosfato aislados de cultivos de arroz y evaluación del p H y en concentraciones de sacarosa y cloruro de sodio sobre su actividad solubilizadora. Trabajo de Grado. Pontificia Universidad Javeriana. Bogotá.

Roos W, Luckner M. 1984. Relationships between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. Journal of General Microbiology 130, 1007-1014. http://dx.doi.org/10.1099/00221287-130-4-1007

Sánchez PA, Salinas JG. 1983. Suelos ácidos. Estrategias para su manejo con bajos insumos en América tropical. Sociedad Colombiana de las Ciencias del Suelo (Eds). Santafé de Bogota. Colombia. 93 p.

Scervino M, Prieto M, Ivana M, Recchi M, Sarmiento N, Godeas A. 2010. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biology and Fertility of Soils 46, 755–763. http://dx.doi.org/10.1007/s00374-010-0482-8

Shaw BD, Hoch HC. 2007. Ions regulate spore attachment, germination, and fungal growth. In: R. J. Howard and N. A. R. Gow (eds). Biology of the Fungal Cell, 2nd Edition The Mycota VIII Springer-Verlag Berlin Heidelberg.

Silvieira MLA, Alleonl LRF, Guilherme LRG. 2003. Biosolids and heavy metals in soils. Scientia Agricola 60(4), 793-806.

Souchie EL, Azcón R, Barea JM, Saggin-Júnior OJ, Ribeiro-da Silva EM. 2006. Phosphate solubilization and synergism between P-solubilizing and arbuscular mycorrhizal fungi. Pesquisa Agropecuária Brasileira 41, 1405-1411. http://dx.doi.org/10.1590/S0100204X20060009000 09

Sridevi M, Mallaiah KV. 2009. Phosphate solubilization by Rhizobium strains. Indian Journal of Microbiology 49, 98-102. http://dx.doi.org/10.1007/s12088-009-0005-1

Sutton J, Peng G. 1993. Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83, 615-621.

Torres-Rubio MG, Valencia-Plata SA. Bernal-Castillo J, Martinez-Nieto P. 2000. Isolation of enterobacteria, Azotobacter sp. and Pseudomonas sp. Producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Revista Latinoamericana de Microbiología 42, 171–176.

Thomas GV, Shantaram MV, Saraswathy N. 1985. Occurrence and activity of phosphate-solubilizing fungi from coconut plantation soils. Plant Soil 87, 357-364.

http://dx.doi.org/10.1007/BF02181903

Trolove SN, Hedle YMJ, Kirk GJD, Bolan NS, Loganathan P. 2003. Progress in selected areas of rhizosphere research on P acquisition. Australian Journal of Soil Research 41, 471– 499. http://dx.doi.org/10.1071/SR02130

Valencia    H,    Sánchez    J,    Valero    N.    2005. Producción de ácido indolacético por microorganismos solubilizadores de fosfato presents en la rizósfera de Espeletia grandiflora y Calamagrostis effusa del Páramo el Granizo. p. 177-193. En: Bonilla, M. (ed.). Estrategias adaptativas de plantas de páramo y del bosque altoandino en la cordillera oriental de Colombia. Unibiblos, Bogotá.

Valencia H, Sánchez J, Vera D, Valero N, Cepeda M. 2007. Microorganismos solubilizadores de fosfatos y bacterias fijadoras de nitrógeno en páramos y región cálida tropical (Colombia) p. 169-183.En: Sánchez, J. (ed.). Potencial biotecnológico de microorganismos en ecosistemas naturales y agroecosistemas. Universidad Nacional de Colombia, Bogotá.

Valero N. 2003. Potencial biofertilizante de bacterias diazotrofas y solubilizadoras de fosfatos asociadas al cultivo de arroz (Oryza sativa L.). [Tesis de maestría] Maestría Interfacultades en Microbiología, Universidad Nacional de Colombia.

Valero N. 2007. Determinación del valor fertilizante de microorganismos solubilizadores de fosfato en cultivos de arroz. p. 169-183. En: Sánchez, J. (ed.). Potencial biotecnológico de microorganismos en ecosistemas naturales y agroecosistemas. Universidad Nacional de Colombia, Bogotá.

Vassilev N, Vassileva M, Fenice M, Federici F. 2001. Immobilized cell technology applied in solubilization of insoluble inorganic rock phosphates and P plant acquisition. Bioresource Technology 79, 263– 271. http://dx.doi.org/10.1016/S0960-8524(01)00017-7

Venkateswardu B, Rao AV, Raina P. 1984. Evaluation of phosphorus solubilization by microorganisms isolated from Aridisols. Journal of the Indian Society of Soil Science 32, 273-277.

Vera D, Perez H, Valencia H. 2002.Aislamiento de hongos solubilizadores de fosfatos de la rizosfera de Arazá (Eugenia stipitata, Myrtaceae). Acta Biologica Colombiana 7(1), 33-40.

Vessey JK. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.

Wakelin S, Warren A, Harvey R, Ryder H. 2004. Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biology and Fertility of Soils 40, 36–43. http://dx.doi.org/10.1007/s00374-004-0750-6

Whitelaw MA. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy 69, 99-151. http://dx.doi.org/10.1016/S0065-2113(08)60948-7

Useche Y. 2003. Contribución al conocimiento de bacterias y hongos solubilizadores de fosfato bajo tres usos de suelo en el sur del Trapecio Amazónico. Trabajo de Grado. Universidad Nacional de Colombia, Facultad de Ciencias. Departamento de Biología. Bogotá.

Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W. 2009. Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Applied Biochemistry and Biotechnology 159, 330-342. http://dx.doi.org/10.1007/s12010-009-8590-3

Zambrano C. 1989. Efecto de la concentración de inóculo de Trichoderma harzianum sobre el desarrollo de Macrophomina phaseolina. p. 56. En: Resúmenes XI Seminario Nacional de Fitopatología. Sociedad Venezolana de Fitopatología. 19 al 23 de Noviembre 1989. Trujillo, Venezuela.

Zhang F, Zhu Z, Yang X. 2013. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Applied Soil Ecology 72, 41-48. http://dx.doi.org/10.1016/j.apsoil.2013.05.016

Zúñiga D, Hoyos R, Afanado L. 2010. Evaluación de plántulas de cardamomo (Elettaria cardamomum (L.) Maton) por su resistencia in vitro al filtrado de cultivo de Fusarium oxysporum Link. Vitae 17(2), 155-164.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background