Induced pluripotent stem cells (iPSCs): uprising in favor of Medical Biotechnology
Paper Details
Induced pluripotent stem cells (iPSCs): uprising in favor of Medical Biotechnology
Abstract
Induced Pluripotent Stem Cells (iPSCs) are stem cells that are reprogrammed genetically from somatic cells to exhibit pluripotent characteristics. The generation of iPSCs from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the enforced expression of a few embryonic transcription factors. Pluripotent stem cells possess the unique property of differentiating into all other cell types. The discovery iPSCs in 2006 has led new avenues and dimension in clinical medicine. In addition, iPSC technology has provided researchers with a unique tool to derive disease-specific stem cells for the study and possible treatment of degenerative disorders with autologous cells. These models can also be used to study the safety and efficacy of known drugs or potential drug candidates for a particular diseased condition, limiting the need for animal studies and considerably reducing the time and money required to develop new drugs. Recently, functional neurons, cardiomyocytes, pancreatic islet cells, hepatocytes and retinal cells have been derived from human iPSCs, thus re-confirming the pluripotency and differentiation capacity of these cells. These findings further open up the possibility of using iPSCs in cell replacement therapy for various degenerative disorders. iPSC are also uprising to develop personalized treatment, vaccination system, toxicological and pharmacological screening those are very important sector related to Medical Biotechnology.
Aasen T, Raya A, Barrero MJ. 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology 26, 1276–1284 http://dx.doi.org/10.1038/nbt.2675
Amir RE, Van den Veyver IB, Schultz R. 2000. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. African Neural Network 47, 670–79
Anokye-Danso F, Trivedi CM, Juhr D. 2011. Highly efficient miRNA mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 http://dx.doi.org/10.1016/j.stem
Aoi T, Yae K, Nakagawa M. 2008. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 http://dx.doi.org/10.1126/science.1154884
Aoki T, Ohnishi H, Oda Y, Tadokoro M, Sasao M, Kato H, Hattori K, Ohgushi H. 2010. Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tissue Engineering Part A 16, 2197–2206
Araki R, Jincho Y, Hoki Y, Nakamura M, Tamura C, Ando S, Kasama Y, Abe M. 2010. Conversion of ancestral fibroblasts to induced pluripotent stem cells. Stem Cells 28, 213–220 http://dx.doi.org/10.1002/stem.282
Avila AM, Burnett BG, Taye AA. 2007. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. Journal of Clinical Investigation 117(3), 659–71. http://dx.doi.org/10.1172/JCI29562
Bahn S, Mimmack M, Ryan M. 2002.Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359, 310– 15/ http://dx.doi.org/.1016/s0140-6736(02)07497-4
Bao S, Tang F, Li X, Hayashi K, Gillich A, Lao K, Surani MA. 2009. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461, 1292–1295. http://dx.doi.org/10.1038/nature08534
Barberi T, Klivenyi P, Calingasan NY. 2003. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nature Biotechnology 21, 1200–07. http://dx.doi.org/10.1038/nbt870
Bechara EG, Didiot MC, Melko M. 2009. A novel functions for fragile X mental retardation protein in translational activation. Journal of Plant Biology 7, 16. http://dx.doi.org/10.1371/journal.pbio.1000016
Bhattacharyya A, McMillan E, Chen SI, Wallace K, Svendsen CN. 2009. A critical period in cortical interneuron neurogenesis in Down syndrome revealed by human neural progenitor cells. Developmental Neuroscience 31, 497–510. http://dx.doi.org/10.1159/000236899
Biancotti JC, Narwani K, Buehler N.2009.Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells 28, 1530–40. http://dx.doi.org/10.1002/stem.483
Bilic J, Jcarlos J, Belmonte I. 2012. Induced Pluripotent Stem Cells Versus Embryonic Stem Cells: Close Enough or Yet Too Far Apart? Stem cells 30, 33–41. http://dx.doi.org/10.1002/stem.700
Blelloch R, Venere M, Yen J, Ramalho-Santos M. 2007. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247. http://dx.doi.org/10.1016/j.stem
Bradley A, Evans M, Kaufman MH, Robertson E. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965),255-6.
Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H, Jaenisch R. 2008. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159. http://dx.doi.org/10.1016/j.stem
Briggs, King. 1952. Eatablishment of the technique of Stem cell nuclear transplantation. Nature 61, 90– 94.
Brinster AL. 1974. Establishment of immortal pluripotent cell lines from teratocarcinomas, tumors of germ cell origin Nature 41,181–89.
Bruck T, Benvenisty N. 2011. Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. Stem Cell Research 6,187–193. http://dx.doi.org/10.1016/j.stem
Buecker C, Chen HH, Polo JM. 2010. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6, 535–546. http://dx.doi.org/10.1016/j.stem
Bussmann LH, Schubert A, Vu Manh TP, De Andres L, Desbordes SC, Parra M, Zimmermann T, Rapino F, Rodriguez-Ubreva J, Ballestar E. 2009. A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5, 554–566. http://dx.doi.org/10.1016/j.stem
Caspi O, Itzhaki I, Arbel G. 2009. In vitro electrophysiological drug testing using human embryonic stem cell-derived cardiomyocytes. Stem Cells Development 18(1), 161-72. http://dx.doi.org/10.1089/scd.2007.0280
Castren M, Tervonen T, Karkkainen V. 2005. Altered diff erentiation of neural stem cells in fragile X syndrome. Proceedings of National Academy of Science 102(49), 17834-9.
Cepeda C, Hurst RS, Calvert CR. 2003. Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. Journal of Neuroscience 23(3), 961–69.
Chambers SM, Fasano CA, Papapetrou EP. 2004. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology 27(3), 275–280. http://dx.doi.org/10.1038/nbt.1529
Chang MY, Kim D, Kim CH, Kang HC, Yang E, Moon JI, Ko S, Park J, Park KS, Lee KA. 2010. Direct reprogramming of rat neural precursors cells and fibroblasts into pluripotent stem cells. PLoS ONE 5(3), e9838. http://dx.doi.org/10.1371/journal.pone.0009838
Churchill JD, Beckel-Mitchener A, Weiler IJ, Greenough WT. 2002 Effects of Fragile X syndrome and an FMR1 knockout mouse model on forebrain neuronal cell biology. Microscopic Research Technique 57, 156–58.
Cooper O, Hargus G, Deleidi M. 2010. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular Journal of Cell and Neuroscience 45(3), 258-66. http://dx.doi.org/10.1016/j.mcn
Coovert DD, Le TT, McAndrew PE.1997. The survival motor neuron protein in spinal muscular atrophy. Human Molecular Genetics 6(8),1205-14.
Cowan CA, Atienza J, Melton DA, Eggan K. 2005. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309(5739), 1369-73.
Crawford DC, Acuna JM, Sherman SL. 2001. FMR1 and the fragile X syndrome: human genome epidemiology review. Genetics in Medicine 3, 359–71
Das AK, Pal R. 2010 Induced pluripotent stem cells (iPSCs): the emergence of a new champion in stem cell technology-driven biomedical applications. Journal of Tissue Engineering and Regeneration Medicine 4, 413–421. http://dx.doi.org/10.1002/term.258
Dawson TM. 2007 Unraveling the role of defective genes in Parkinson’s disease. Parkinsonism and Related Disorders 13 (3), 248–49. http://dx.doi.org/10.1016/S1353-8020(08)70007-5
DeKelver RC, Choi VM, Moehle EA. 2010. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Research 20, 1133–42. http://dx.doi.org/10.1101/gr.106773.110
Deng J, Shoemaker R, Xie B. 2009. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology 27, 353–360. http://dx.doi.org/10.1038/nbt.1530
Desponts C, Ding S. 2010. Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods of Molecular Biology 636, 207–218. http://dx.doi.org/10.1155/2013/705902
Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC. 2008. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALScausing mutation. Cell Stem Cell 3, 637–648. http://dx.doi.org/10.1016/j.stem
Draper JS, Smith K, Gokhale P. 2004. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nature Biotechnology 22, 53– 54.
Imreh MP, Gertow K, Cedervall J. 2006. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. Journal of Cellular Biochemistry 99, 508–516. http://dx.doi.org/10.1002/jcb.20897
Ebert AD, Svendsen CN. 2010. Human stem cells and drug screening: opportunities and challenges. Nature Review Drug Discovery 9, 367–72. http://dx.doi.org/10.1038/nrd3000
Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM III, Yanagimachi R, Jaenisch R. 2001. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proceedings of National Academy of Science of United States of America 98, 6209–6214. http://dx.doi.org/10.1073/pnas.192433399
Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. 2008. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Development 22, 152–65.
Ellis J, Baum C, Benvenisty N. 2010. Benefits of utilizing gene modified iPSCs for clinical applications. Cell Stem Cell 7, 429–30.
Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K. 2009. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genetics 41, 968–976. http://dx.doi.org/10.1038/ng.428
Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S. 2010. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71– 79. http://dx.doi.org/10.1016/j.stem
Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y. 2006. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nature Cell Biology 8(2), 188–194.
Feng B, Jiang J, Kraus P, Ng JH, Heng JC, Chan YS, Yaw LP, Zhang W, Loh YH, Han J. 2009. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor. Nature Cell Biology 11(2), 197-203. http://dx.doi.org/10.1038/ncb1827
Ferrante RJ. 2009. Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochemistry and Biophysics Activity 1792(6), 506-20. http://dx.doi.org/10.1016/j.bbadis
Finch BW, Ephrussi B. 1967. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proceedings of National Academy of Science of United States of America 57(3), 615-21.
Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. 2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings National Academy of Science of United States of America 85(8), 348-62.
Ghosh Z, Wilson KD, Wu Y. 2010.Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS ONE 5(2): e8975. http://dx.doi.org/10.1371/journal.pone.0008975
Gidekel S, Bergman Y. 2002. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. Journal of Biological Chemistry 277(37), 34521-30.
Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodrı´guez-Piza I, Vassena R, Raya A, Boue S, Barrero MJ, Corbella BA. 2009. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5(6), 584-95. http://dx.doi.org/10.1016/j.stem
Gore A, Li Z, Fung HL. 2011. Somatic coding mutations in human induced pluripotent stem cells 471(7336),63-7. http://dx.doi.org/10.1038/nature09805
Guenther MG, Frampton GM, Soldner F. 2010. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7(2), 249-57. http://dx.doi.org/10.1016/j.stem
Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A. 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Cell Development 136(7), 1063-9. http://dx.doi.org/10.1242/dev.030957
Gupta MK, Illich DJ, Gaarz A. 2010. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar. Biochemistry and Molecular Biology 10, 1–19. http://dx.doi.org/10.1186/1471-213X-10-98
Gurdon JB, Byrne JA, Simonsson S. 1962. Differentiated amphibian cells indeed retain the genetic information to support the generation of cloned frogs. Proceedings of National Academy of Sciences 24(20), 2239–2263 http://dx.doi.org/10.1101/gad.1963910
Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S. 2009. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5(4), 434-41/ http://dx.doi.org/10.1016/j.stem
Hagerman RJ, Hagerman PJ. 2002. The fragile X premutation: into the phenotypic fold. Current Opinion in Genetics Development 12(3), 278-83.
Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA. 2008. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452(7189), 877-81. http://dx.doi.org/10.1038/nature06714
Hall J, Guo G, Wray J, Eyres I, Nichols J, Grotewold L, Morfopoulou S, Humphreys P, Mansfield W, Walker R. 2009. Oct4 and LIF/Stat3 additively induce Kruppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 5(6), 597-609. http://dx.doi.org/10.1016/j.stem
Han DW, Do JT, Gentile L, Stehling M, Lee HT, Scho ler HR. 2008. Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 26(2), 445-54.
Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T. 2010. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6, 167–174. http://dx.doi.org/10.1016/j.stem
Hinton VJ, Brown WT, Wisniewski K, Rudelli RD. 1991. Analysis of neo cortex in three males with the fragile X syndrome. American Journal of Medicine and Genetics 41, 289–94. http://dx.doi.org/10.1002/ajmg
Hou Lc, Antion MD, Hu D, Spencer CM, Paylor R, Klann E. 2006. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–54. http://dx.doi.org/10.1186/1756-6606-6-15
Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA. 2008. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology 26, 795–797. http://dx.doi.org/10.1038/nbt1418
Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K, Yanagimachi R, Lander ES, Golub TR, Jaenisch R. 2002. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proceedings of National Academy of Sciences 99(20), 12889– 12894.
Hung CW, Liou YJ, Lu SW. 2010. Stem cell-based neuroprotective and neurorestorative strategies. International Journal of Molecular Sciences 11, 2039–55. http://dx.doi.org/10.3390/ijms11052039
Hussein SM, Batada NN, Vuoristo S. 2011. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 http://dx.doi.org/10.1038/nature09871
Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K. 2009. A small molecule inhibitor of tgf-bsignaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5, 491–503. http://dx.doi.org/10.1016/j.stem
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 http://dx.doi.org/10.1016/j.cell
Inoue H, Yamanaka S. 2011. The Use of Induced Pluripotent Stem Cells in Drug Development. Clinical pharmacology & Therapeutics 89(5), 655-659 http://dx.doi.org/10.1038/clpt
Irwin SA, Patel B, Idupulapati M. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. American Journal of Medicine and Genetics 98, 161–67.
Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. 2010. Role of Tet proteins in 5mC to 5hmC conversion, EScell self-renewal and inner cell mass specification. Nature 466(7310), 1129-33. http://dx.doi.org/10.1038/nature09303
Izrael M, Zhang P, Kaufman R. 2007. Human oligodendrocytes derived from embryonic stem cells: Effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Molecular Cell and Neuroscience 34, 310–23.
Jackson-Grusby L, Beard C, Possemato R, TudorM, Fambrough D, Csankovszki G, Dausman J, Lee P, Wilson C, Lander E. 2001. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genetics 27(1), 31–39.
Jia F, Wilson KD, Sun N. 2010. A nonviral minicircle vector for deriving human iPS cells. Nature Methods 7, 197–199. http://dx.doi.org/10.1038/nmeth.142
Judson RL, Babiarz JE, Venere M, Blelloch R. 2009. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology 27, 459–461. http://dx.doi.org/10.1038/nbt.1535
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. 2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–75. http://dx.doi.org/10.1038/nature07864
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Belmonte JC. 2009. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 http://dx.doi.org/10.1038/nature08311
Kim DS, Lee JS, Leem JW. 2010. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Review 6, 270–81. http://dx.doi.org/10.1007/s12015-010-9138-1
Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. 2009. HuR recruits let-7/RISC to repress c-Myc expression. Genetics Development 23, 1743–1748. http://dx.doi.org/10.1101/gad.1812509
Kim K, Doi A, Wen B. 2010. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290. http://dx.doi.org/10.1038/nature09342
Klapstein GJ, Fisher RS, Zanjani H. 2001. Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington’s disease transgenic mice. Journal of Neurophysiology 86, 2667–77.
Kleinsmith LJ, Pierce GB Jr. 1964. Multipotentiality of single embryonal carcinoma cells. Cancer Research 24, 1544–1551.
Knoepfler PS. 2008. Why myc? An unexpected ingredient in the stem cell cocktail. Cell Stem Cell 2, 18–21. http://dx.doi.org/10.1016/j.stem
Ko K, Tapia N, Wu G, Kim JB, Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B. 2009. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5, 87–96. http://dx.doi.org/10.1016/j.stem
Koch P, Kokaia Z, Lindvall O, Brustle O. 2009. Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurology 8, 819–29. http://dx.doi.org/10.1002/stem.1227
Lapillonne H, Kobari L, Mazurier C. 2010. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Heamatologica 95, 1651–1659. http://dx.doi.org/10.3324/haematol
Laurent LC, Ulitsky I, Slavin I. 2011. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Nature 8, 106– 118. http://dx.doi.org/10.1016/j.stem
Lee G, Chambers SM, Tomishima MJ, Studer L. 2010. Derivation of neural crest cells from human pluripotent stem cells. Nature Protocol 5, 688–70.1 http://dx.doi.org/10.1038/nprot
Lefebvre S, Burglen L, Reboullet S. 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1), 155– 65.
Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E. 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195– 3205.
Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J. 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141, 872–883. http://dx.doi.org/10.1016/j.cell
Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H. 2009. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4, 11–15. http://dx.doi.org/10.1016/j.stem
Lin CH, Lin C, Tanaka H, Fero ML, Eisenman RN. 2009. Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. Plant Science 4, 7839. http://dx.doi.org/10.1371/journal.pone.0007839
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A. 2009. A chemical platform for improved induction of human iPSCs. Nature Methods 6, 805– 808. http://dx.doi.org/10.1038/nmeth
Maehr R, Chen S, Snitow M. 2009. Generation of pluripotent stem cells from patients with type 1 diabetes. Proceeding Nature Academy Sciences 106(37), 15768–15773. http://dx.doi.org/10.1073/pnas.0906894106
Maekawa M, Yamaguchi K, Nakamura T. 2011. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474(7350), 225–229. http://dx.doi.org/10.1038/nature10106
Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K. 2008. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–345. http://dx.doi.org/10.1016/j.stem
Maitra A, Arking DE, Shivapurkar N. 2005 Genomic alterations in cultured human embryonic stem cells. Nature Genetics 37, 1099–1103. http://dx.doi.org/10.1242/ng.012054
Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB. 2010. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28, 713– 720. http://dx.doi.org/10.1002/stem.402
Marchetto MC, Carromeu C, Acab A. 2010. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539. http://dx.doi.org/10.1016/j.cell
Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA. 2009. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149– 1153. http://dx.doi.org/10.1038/nature08287
Markoulaki S, Hanna J, Beard C, Carey BW, Cheng AW, Lengner CJ, Dausman JA, Fu D, Gao Q, Wu S. 2009. Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nature Biotechnology 27, 169–171. http://dx.doi.org/10.1038/nbt
Martin GR. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of National Academy of Sciences 78, 7634–7638.
Martinez-Fernandez A, Nelson TJ, Ikeda Y. 2010. c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research 3, 13–23. http://dx.doi.org/10.1007/s12265-009-9150-5
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y. 2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927–931. http://dx.doi.org/10.1038/nature08858
Matsui Y, Zsebo K, Hogan BL. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.
Mattis VB, Ebert AD, Fosso MY, Chang CW, Lorson CL. 2009. Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Human Molecular Genetics 18, 3906–13.
Mauritz C, Schwanke K, Reppel M. 2008. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118(5), 507-17. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.7 78795
Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. 2000. Demethylation of the zygotic paternal genome. Nature 403(6769), 501–502.
Mayshar Y, Ben-David U, Lavon N. 2010. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7(4), 521-31. http://dx.doi.org/10.1016/j.stem
Meissner A, Wernig M, Jaenisch R. 2007. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology 25(10), 1177–1181.
Melton C, Judson RL, Blelloch R. 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626. http://dx.doi.org/10.1038/nature08725
Meyer JS, Shearer RL, Capowski EE. 2009. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of National Academy Sciences 106(39), 16698–16703. http://dx.doi.org/10.1073/pnas.0905245106
Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. 2008. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55. http://dx.doi.org/10.1038/nature07056
Mikkola I, Heavey B, Horcher M, Busslinger M. 2002. Reversion of B cell commitment upon loss of Pax5 expression. Science 297, 110–113.
Miller BR, Walker AG, Shah AS, Barton SJ, Rebec GV. 2008. Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington’s disease. Journal of Neurophysiology 100, 2205–16. http://dx.doi.org/10.1152/jn.90606
Moehle EA, Rock JM, Lee YL. 2007. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proceedings of National Academy of Sciences 104, 3055–60.
Mollamohammadi S, Taei A, Pakzad M. 2009. Simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Human Reproductive 24(10), 2468–2476. http://dx.doi.org/10.1093/humrep/dep244
Monzo K, Papoulas O, Cantin GT, Wang Y, Yates JR, Sisson JC. 2006. Fragile X mental retardation protein controls trailer hitch expression and cleavage furrow formation in Drosophila embryos. Proceedings of National Academy of Sciences 103, 18160–65.
Morizane R, Monkawa T, Itoh H. 2009. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochemistry and Biophysics Research Community 390, 1334–1339. http://dx.doi.org/10.1016/j.bbrc
Nichols J, Jones K, Phillips JM, Newland SA, Roode M, Mansfield W, Smith A, Cooke A. 2009. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nature Medicine 15, 814–818.
Niclis JC, Trounson AO, Dottori M. 2009.Human embryonic stem cell models of Huntington disease. Reproductive Biomedicine 19,106–13.
Oberle I, Rousseau F, Heitz D.1991. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–102.
Ogonuki N, Inoue K, Yamamoto Y, Noguchi Y, Tanemura K, Suzuki O, Nakayama H, Doi K, Ohtomo Y, Satoh M. 2002. Early death of mice cloned from somatic cells. Natural Genetics 30, 253– 254.
Ohi Y, Qin H, Hong C. 2011. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biology 13, 541–549. http://dx.doi.org/10.1038/ncb2239
Okada Y, Matsumoto A, Shimazaki T. 2008. Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell- derived neural stem/progenitor cells. Stem Cells 26, 3086–98. http://dx.doi.org/10.1634/stemcells
Okita K, Ichisaka T, Yamanaka S. 2007. Generation of germlinecompetent induced pluripotent stem cells. Nature 448, 313– 317.
Okita K, Nakagawa M, Hyenjong H. 2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953. http://dx.doi.org/10.1126/science.1164270
Onorati M, Camnasio S, Binetti M. 2010. Neuropotent self-renewing neural stem (NS) cells derived from mouse induced pluripotent stem (iPS) cells. Molecular Cell Neuroscience 43, 287–295. http://dx.doi.org/10.1016/j.mcn
Osafune K, Caron L, Borowiak M. 2008. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology 26, 313–315. http://dx.doi.org/10.1038/nbt1383
Osakada F, Ikeda H, Mandai M. 2008.Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology 26, 215–24. http://dx.doi.org/10.1038/nbt1384
Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. 2000. Active demethylation of the paternal genome in the mouse zygote. Current Biology 10, 475–478.
Page RL, Ambady S, Holmes WF. 2009. Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning Stem Cells 11(3), 417–426. http://dx.doi.org/10.1089/clo
Park IH, Arora N, Huo H. 2008. Disease-specific induced pluripotent stem cells. Cell 134, 877–886. http://dx.doi.org/10.1016/j.cell
Pasi CE, Dereli-Oz A, Negrini S. 2011 Genomic instability in induced stem cells. Cell Death 10, 1038. http://dx.doi.org/10.1038/cdd
Pereira CF, Piccolo FM, Tsubouchi T, Sauer S, Ryan NK, Bruno L, Landeira D, Santos J, Banito A, Gil J. 2010. ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell 6, 547–556. http://dx.doi.org/10.1016/j.stem
Perrier AL, Tabar V, Barberi T. 2004. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of National Academy of Sciences 101, 12543–48.
Pfannkuche K, Fatima A, Gupta MK, Dieterich R, Hescheler J. 2010. Initial colony morphology-based selection for iPS cells derived from adult fibroblasts is substantially improved by temporary UTF1-based selection. Plant Science 5, 9580. http://dx.doi.org/10.1371/journal.pone.0009580
Pick M, Stelzer Y, Bar-Nur O, Mayshar Y, Eden A, Benvenisty N. 2009. Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 27, 2686–2690. http://dx.doi.org/10.1002/stem.205
Polo JM, Liu S, Figueroa ME. 2010. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology 28, 848–855. http://dx.doi.org/10.1038/nbt.1667
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. 2008. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201– 1212. http://dx.doi.org/10.1016/j.cell
Roses AD, Saunders AM. 1994. APOE is a major susceptibility gene for Alzheimer’s disease. Current Opinion of Biotechnology 5, 663–67.
Santiago Y, Chan E, Liu PQ. 2008. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of National Academy of Science 105, 5809–14. http://dx.doi.org/10.1073/pnas.0800940105
Schenke-Layland K, Rhodes KE, Angelis E. 2008. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26, 1537–1546. http://dx.doi.org/10.1634/stemcells
Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW. 2007. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449, 346– 350.
Seo H, Sonntag KC, Isacson O. 2004. Generalized brain and skin proteasome inhibition in Huntington’s disease. Annals of Neurology 56, 319– 28.
Shelbourne PF, Keller-McGandy C, Bi WL. 2007. Triplet repeats mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Human Molecular Genetics 16, 1133– 42.
Shi Y, Desponts C, Do JT. 2008. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3, 568–574. http://dx.doi.org/10.1016/j.stem
Silva J, Chambers I, Pollard S, Smith A. 2006. Nanog promotes transfer of pluripotency after cell fusion. Nature 441, 997–1001.
Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. 1993. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74, 291–98.
Sipione S, Rigamonti D, Valenza M. 2002. Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Human Molecular Genetics 11, 1953–65.
Soldner F, Hockemeyer D, Beard C. 2009. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–77. http://dx.doi.org/10.1016/j.cell
Song Z, Cai J, Liu Y. 2010. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Hepatology 19, 1233–1242. http://dx.doi.org/10.1038/cr
Stadtfeld M, Maherali N, Borkent M, Hochedlinger K. 2010. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Natural Methods 7, 53–55. http://dx.doi.org/10.1038/nmeth.1409
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. 2008. Inducedpluripotent stem cells generated without viral integration. Science 322, 945–49. http://dx.doi.org/10.1126/science
Stadtfeld M, Hochedlinger K. 2010. Induced pluripotency: history, mechanisms, and applications. Genes Development. 24, 2239-2263. http://dx.doi.org/10.1101/gad.1963910
Sutcliff e JS, Nelson DL, Zhang F. 1992. DNA methylation represses FMR-1 transcription in fragile X syndrome. Human Molecular Genetics 1, 397–400.
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.http://dx.doi.org/10.1126/science.1170116
Tao O, Shimazaki T, Okada Y. 2010. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. Journal of Neuroscience Research 88, 234–47. http://dx.doi.org/10.1002/jnr.22208
Tateishi K, He J, Taranova O. 2008. Generation of insulin-secreting islet- like clusters from human skin fibroblasts. Journal of Biological Chemistry 283, 31601–31607. http://dx.doi.org/10.1074/jbc.M806597200
Taura D, Noguchi M, Sone M. 2009. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. Cell 583, 1029–103. http://dx.doi.org/10.1074/jbc.M806597200
Tchieu J, Kuoy E, Chin MH, Trinh H, Patterson M, Sherman SP, Aimiuwu O, Lindgren A, Zack JA, Clark AT. 2010. Female human iPS cells retain an inactive X-chromosome. Cell Stem Cell 19, 329–342. http://dx.doi.org/10.1016/j.stem
Thomson JA, Itskovitz-Eldor J, Shapiro SS. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–47.
Tokumoto Y, Ogawa S, Nagamune T, Miyake J. 2010. Comparison of efficiency of terminal diff erentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro. Journal of Bioscience and Bio engineering 109, 622–28. http://dx.doi.org/10.1016/j.jbiosc
Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S. 2003. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Molecular Cell Biology 23, 2699–2708.
Trettel F, Rigamonti D, Hilditch-Maguire P. 2000. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Human Molecular Genetics 9, 2799–809.
Tsai SY, Clavel C, Kim S, Ang YS, Grisanti L, Lee DF, Kelley K, Rendl M. 2010. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 28, 221–228. http://dx.doi.org/10.1002/stem.281
Tsubooka N, Ichisaka T, Okita K, Takahashi K, Nakagawa M, Yamanaka S. 2009. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells 14, 683–694. http://dx.doi.org/10.1111/j.1365-2443
Tsuji O, Miura K, Okada Y. 2010. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proceedings of National Academy Sciences 107, 12704–09 doi: 10.1073/pnas.0910106107.
Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. 2010. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–11. http://dx.doi.org/10.1016/j.stem
Utikal J, Maherali N, Kulalert W. 2009. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. Journal of Cell Science 122(19), 3502–3510. http://dx.doi.org/10.1242/jcs.054783
Varani K, Abbracchio MP, Cannella M. 2003. Aberrant A2A receptor functions in peripheral blood cells in Huntington’s disease. Cell 17, 2148–50.
Varas F, Stadtfeld M, de Andres-Aguayo L, Maherali N, di TullioA, Pantano L, Notredame C, Hochedlinger K, Graf T. 2009. Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells 27, 300–306. http://dx.doi.org/10.1634/stemcells
Vaziri H, Chapman KB, Guigova A. 2010. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regeneration Medicine 5, 345–63. http://dx.doi.org/10.2217/rme.10.21
Verkerk AJ, Pieretti M, Sutcliffe JS. 1991. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–14.
Verlinsky Y, Strelchenko N, Kukharenko V. 2005. Human embryonic stem cell lines with genetic disorders. Reproductive Biomedicine Online 10, 105– 110.
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–41. http://dx.doi.org/10.1038/nature08797
Virginia B Mattis, Clive N. 2011. Svendsen Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurology 10, 383–94. http://dx.doi.org/10.1016/S1474-4422(11)70022-9
Viswanathan SR, Daley GQ, Gregory RI. 2008. Selective blockade of microRNA processing by Lin28. Science 320, 97–100. http://dx.doi.org/10.1126/science.1154040
Wakayama S, Jakt ML, Suzuki M, Araki R, Hikichi T, Kishigami S, Ohta H, Van Thuan N, Mizutani E, Sakaide Y. 2006. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24, 2023–2033.
Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. 2001. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740– 743.
Wilson KD, Venkatasubrahmanyam S, Jia F, Sun N, Butte AJ, Wu JC. 2009. Micro RNA profiling of human-induced pluripotent stem cells. Stem Cells Development 18, 749–758. http://dx.doi.org/10.1089/scd.2008.0247
Wernig M, Lengner CJ, Hanna J, Lodato MA, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R. 2008. A drug inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnology 26, 916–924. http://dx.doi.org/10.1038/nbt1483
Wichterle H, Lieberam I, Porter JA, Jessell TM. 2002 Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–97.
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810– 813.
Wilson KD, Venkatasubrahmanyam S, Jia F, Sun N, Butte AJ, Wu JC. 2009. Micro RNA profiling of human-induced pluripotent stem cells. Stem Cells Development 18, 749–758. http://dx.doi.org/10.1089/scd.2008.0247
Winkler T, Cantilena A, Metais JY, Xu X, Nguyen AD, Borate B, Antosiewicz-Bourget JE, Wolfsberg TG, Thomson JA, Dunbar CE. 2010. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells. Stem Cells 28, 687–694. http://dx.doi.org/10.1002/stem.322
Wu Y, Zhang Y, Mishra A, Tardif SD, Hornsby PJ. 2010. Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Research 4, 180–188. http://dx.doi.org/10.1016/j.scr
Xie H, Ye M, Feng R, Graf T. 2004. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676
Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y. 2009. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proceedings of National Academy of Sciences 106, 808–813. http://dx.doi.org/10.1073/pnas.0812090106
Xu K, Bogert BA, Li W, Su K, Lee A, Gao FB. 2004. The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Current Biology 14, 1025–34.
Yamanaka S. 2009. Elite and stochastic models for induced pluripotent stem cell generation. Nature 460, 49–52 doi: 10.1038/nature08180
Yamashita H, Nakamura T, Takahashi T. 2006. Embryonic stem cell-derived neuron models of Parkinson’s disease exhibit delayed neuronal death. Journal of Neurochemistry 98, 45–56. http://dx.doi.org/10.1038/nature08180
Yan Y, Yang D, Zarnowska ED. 2005. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells. 23, 781–90.
YangWC, PatelKG, LeeJ. 2009. Cell-free production of transducible transcription factors for nuclear reprogramming. Biotechnology and Bioengineering 104(6), 1047–1058. http://dx.doi.org/10.1002/bit.22517
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. 2008. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523. http://dx.doi.org/10.1038/nature06968
Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. 2009. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5(3),237-41. http://dx.doi.org/10.1016/j.stem
Young RA. 2011. Control of the embryonic stem cell state. Cell 144(6), 940–954. http://dx.doi.org/10.1016/j.cell
Yu J, Hu K, Smuga-Otto K. 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801. http://dx.doi.org/10.1126/science.1172482
Zalfa F, Giorgi M, Primerano B. 2003. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–27.
Zhang D, Jiang W, Liu M. 2009. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulinproducing cells. Cell Research 19(4), 429–438. http://dx.doi.org/10.1038/cr
Zhao HX, Li Y, Jin HF, Xie L, Liu C, Jiang F, Luo YN, Yin GW, Li Y, Wang J. 2010. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation 324, 797–801. http://dx.doi.org/10.1016/j.diff
Zhou H, Wu S, Joo JY. 2009. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–84 http://dx.doi.org/10.1016/j.stem
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. 2008. In vivo reprogramming of adult pancreatic exocrine cells to b-cells. Nature 455, 627–632. http://dx.doi.org/10.1038/nature07314
Zhou W, Freed CR. 2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27, 2667–2674. http://dx.doi.org/10.1002/stem.201
Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau- Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ. 2009. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5, 97–110. http://dx.doi.org/10.1016/j.stem
Manas Kanti Saha1, Abdullah-Al-Emran2 (2013), Induced pluripotent stem cells (iPSCs): uprising in favor of Medical Biotechnology; IJB, V3, N10, October, P40-65
https://innspub.net/induced-pluripotent-stem-cells-ipscs-uprising-in-favor-of-medical-biotechnology/
Copyright © 2013
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0