Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | April 1, 2014

VIEWS 1
| Download 2

Influence of ammonia-nitrogen on the diversity of microalgae in clean and highly concentrated wastewater

Fida Hussain, Syed Zahir Shah, Muhammad Saleem Khan, Wisal Muhammad, Sajjad Ali, Wenguang Zhou, Roger Ruan

Key Words:


J. Bio. Env. Sci.4(4), 418-421, April 2014

Certification:

JBES 2014 [Generate Certificate]

Abstract

The diversity of microalgae can be affected by different factors serving as source of their nutrients. The most promising factor which is highly variable for different clean and waste-water bodies is Ammonia-nitrogen (NH4-N). The NH4-N studied for different locations of the district Malakand showed a variation in their values in respect to different seasons. The areas studied has NH4-N value ranges from 0.4-3 mg/L for stagnant water, 0.1-0.8 mg/L for running water and 2.1- 4.4 mg/L for wastewater. The highest values were found to be in summer season for all the water bodies studied. The NH4-N values were enhanced by warm temperature in stagnant and waste water bodies, while there was no temperature effect on NH4-N of running water. NH4-N is a basic source of nitrogen for microalgae growth and stagnant clean water has sufficient NH4-N which is best suitable place for a variety of microalgae growth. Because of high temperature summer season could provide sufficient NH4-N in these water bodies. Excessive amount of NH4-N in a water body could limit microalgae variation and only tolerant species could develop which is a source of algal blooms.

VIEWS 1

Copyright © 2014
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Influence of ammonia-nitrogen on the diversity of microalgae in clean and highly concentrated wastewater

Allison FE, Morris HJ. 1930. Nitrogen Fixation by Blue-Green Algae. Science 71(1834), 221-3.

Anderson HA. 1909. THE ALGAe OF THE ITHACA MARSHES. Science 30(775), 654.

Arauzo M, Colmenarejo M, Martınez E and Garcıa M. 2000. The role of algae in a deep wastewater self-regeneration pond. Water Research 34(14), 3666-3674.

Barsanti L and Gualtieri P. 2006. Algae: Anatomy. Biochemistry, and Biotechnology. CRC Press: 167.

Bogan RH. 1961. Removal of sewage nutrients by algae. Public health reports, 76(4), 301-308.

Brown RM, Jr, Larson DA and Bold HC. 1964. Airborne Algae: Their Abundance and Heterogeneity. Science, 143(3606), 583-5.

Combs GF. 1952. Algae (Chlorella) as a source of nutrients for the chick. Science, 116(3017), 453-4.

Geoghegan MJ. 1951. Unicellular algae as a source of food. Nature, 168(4271), 426-7.

Leghari M, Waheed SB and Leghari M. 2001. Ecological study of algal flora of kunhar river of pakistan. Pak J Bot, 33, 176-183.

Setchell WA. 1917. Geographical Distribution of the Marine Algae. Science, 45(1157), 197-204.

Skinner CE and Gardner CG. 1930. The Utilization of Nitrogenous Organic Compounds and Sodium Salts of Organic Acids by Certain Soil Algae in Darkness and in the Light. Journal of bacteriology, 19(3), 161-79.

Wang L. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol, 101(8), 2623-8.

Watanabe A, Nishigaki S and Konishi C. 1951. Effect of nitrogen-fixing blue-green algae on the growth of rice plants. Nature, 168(4278), 748-9.

Zimmo O, Van der Steen N and Gijzen H. 2004. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds. Water Res, 38(4), 913-920.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background