Influence of water stress on some biochemical markers pigment contents and osmotic adjustment of durum wheat leaves induced by PEG 6000

Paper Details

Research Paper 01/05/2018
Views (406) Download (16)

Influence of water stress on some biochemical markers pigment contents and osmotic adjustment of durum wheat leaves induced by PEG 6000

Adra Mouellef, Ratiba Bousba, Abdelhamid Djekoun, Nadia Ykhlef
Int. J. Biosci.12( 5), 21-31, May 2018.
Certificate: IJB 2018 [Generate Certificate]


Wheat constitutes a base element in human nutrition around the world. The understanding of the mechanisms adopted by plants in constraining conditions is essential for improving wheat tolerance to abiotic stress. The objective of this investigation is to study the effect of drought imposed by Polyethylene glycol 6000 on two durum wheat varieties: Oued Znati and Guemgoum Rkhem, growing in hydroponic condition and conducted under two water regimes. Various parameters are performed such as: relative water content, osmotic adjustment, chlorophyll content (a), (b) and soluble sugar assay. The results showed that the two studied varieties differed significantly in their responses to  water deficit and that stress treatment caused  a decrease in the leaf  relative water content, the chlorophyll content (a), as well as the chlorophyll content (b), However, we observed  an increase in osmotic adjustment and soluble sugar content. As a result, both varieties follow the same tolerance or avoidance strategies for water stress, but to different degrees. From the data it was obvious that the Oued Znati variety was the most drought tolerant genotype having signifi­cantly higher osmotic adjustment, sugar accumulation, and relative water content while lower chlorophyll b content under water stress conditions. It resulted that this variety is considered a tolerant variety and can be used in further research for genetic characterization of this traits and durum wheat breeding programs.


Abeledo LG, Savin R, Slafer GA. 2008. Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal Agronomy 28, 541-550.

Abid G, Hessini K, Aouida M, Aroua I,  Baudoin JP, Muhovski Y, Mergeai G, Sassi K, Machraoui M , Souissi F, Jebara M. 2017. Agro-physiological and biochemical responses of faba bean (ViciafabaL. var. ‘minor’) genotypes to water deficit stress BiotechnologieAgronomieSociétéetEnvironnement. 21(2), 146-159.

Al hakimi A, Monneveux P, Galiba G. 1995. Soluble sugars, proline, and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RCW from T. polonicum into T. durum.  Genetic Breeding Journal.49(3), 237-244.

Arabzadeh N. 2012. The Effect of Drought Stress on Soluble Carbohydrates (Sugars) in Two Species ofHaloxylonpersicum andHaloxylonaphyllum.Asian Journal of Plant Science.11, 44-51.

Ashraf M, Foolad MR. 2007. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance.Environmental and Experimental Botany.59, 206–216.

Bajji M, Lutts S, Kinet JM. 2001.Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Science160, 669 -681.

Bartels D, Salamini F. 2001. Desiccation Tolerance in the Resurrection Plant Craterostigmaplantagineum. A Contribution to the Study of Drought Tolerance at the Molecular Level.PlantPhysiology127, 1364-1353.

Bensari M, Calme SJ, Viala G .1990. Répartition du carbonefixé par photosynthèse entre l’amidonet le saccharosedans la feuille de soja: influence d’un déficithydrique. Plant Physiology and Biochemistry Journal 28,  113-124.

Caglar O, Ozturk A, Aydin M, Bayram S. 2011.  Paraquat tolerance of bread wheat (Triticum aestivum L.) genotypes.Animal and Veterinary Advances Journal 10, 3363–3367.

Chen Z, Gallie DR.2004. The Ascorbic acid Redox State Controls Guard Cell Signaling and Stomatal Movement.Plant Cell Journal 16, 1143-1162.

Cixin He MS. 2005. Analysis of ATNHX1-expressing transgenic cotton under high salt conditions and in the field.A dissertation in biology, PhD thesis.Texas Tech University. USA.

Clarke JM, McCaig TN. 1982. Excised- leaf water retention capability as an indicator of drought resistance of Triticum genotypes. Canadian of Plant Science Journal 62, 571-578.

Djermoun A. 2009. La production céréalière en Algérie : les principalescaractéristiques. Revue Nature et Technologie. 1, 45-53.

Dubois M, Gilles KA, Hamilton JK, Ruberg PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3), 350-356.

FAO. 2015. Organisation des nationsunies pour l’alimentation et l’agriculture. Perspectives de récolteet situation alimentaire. (

Fotovat R, Valizadeh M, Toorehi M. 2007. Association between water-use-efficiency components and total chlorophyll content (SPAD) in wheat (Triticumaestivum L.) under well-watered and drought stress conditions. Food.Agricul. Environ Journal. 5, 225-227.

Fu J, Huang B, Fry J. 2010. Osmotic Potential, Sucrose Level, and Activity of Sucrose Metabolic Enzymes in Tall Fescue in Response to Deficit Irrigation.Journal of the American Society for Horticultural Science 135(6), 506–510.

Gaudillère JP, Barcelo Mo. 1990. Effets des facteurshydriquesetosmotiquessur la croissance des talles de blé. Agronomie, EDP Sciences.10(5), 423-432.

Geravandia M, Farshadfara E, Kahrizia D. 2011. Evaluation of Some Physiological Traits as Indicators of Drought Tolerance in Bread Wheat Genotypes.Russian of Plant Physiology Journal 58(1), 69-75.

Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y. 2006. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Special Issue: Phenotypic Plasticity and the Changing Environment. Experimental Botany Journal 57(2), 291–302.

Jagtap V, Bhargava S, Sterb P, Feierabend J. 1998. Comparative effect water, heat and light stresses on photosynthetic reactions in Soghum bicolor (L.) Moench. Experimental Botany Journal 49(327),  1715-1721.

Kameli A, LÖsel DM. 1993. Carbohydrates and water status in wheat plants under water stress. New Phytologist 125(3), 609-614.

Keyvan S. 2010. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal & Plant Sciences 8(3), 1051- 1060.

Khayatnezhad M, Gholamin R. 2012. The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays).African Journal of Clinical and Experimental Microbiology 6(12), 2844-2848.

Korir PC, Nyabundi JO, Kimutro PK. 2006. Genotypic Response of Common Bean (Phaseolus vulgaris L.) to Moisture Stress Condition in Kenya. Asian Journal of Plant sciences 5(1).24-32.

Lichtenthaler HK. 1987. Chlorophylls and Carotenoids: Pigments of Photosynthetic Bio membranes. Methods in Enzymology 148, 350-382.

Ludlow MM, Chu ACP, Clements RT, Kerslake RG. 1983. Adaptation of species of Centrosemato water stress. Australian Journal of Plant Physiology 10, 119-130.

Malik S, Ashraf M. 2012. Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticumaestivum L.) under drought.Soil & Environment Journal 31(1), 72-77.

Marwood CA, Greenberg BM. 1996. Effect of Supplementary UVB Radiation on Chlorophyll Synthesis and Accumulation of Photosystems during Chloroplast Development in Spirodelaoligorrhiza. Photochemistry and Photobiology Journal 64(4), 664-670.

Maury P, Berger M, Mojayad F, Planchon C. 2000. Leaf water characteristics and drought acclimation in sunflower genotypes.Plant and Soil 223, 153-160.

Maury P, Langlade N, Grieu P, Rengel D, Sarrafi A, Debaeke P, Vincourt P. 2011. Ecophysiologieetgénétique de la tolérance à la sécheresse chez le tournesol. Innovations Agronomiques 14, 123-138.

Mekliche A, Boukecha D, Hanifi-Mekliche L. 2003. Etude de la tolérance à la sécheresse de quelquesvariétés de blédur(Triticum durumDesf.). I. Effet de l’irrigation de complémentsur les caractèresphrénologiques,morphologiquesetphysiologiques. Annales de l’Institut National Agronomique.El-Harrach. Alger 24(2), 97-110.

Merchant A, Tausz M, Arndt SK, Adams MA. 2006. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell and Environment 29, 2017–2029. http://doi/10.1111/j.1365-3040.2006.01577.x

Moaveni P. 2011.Effect of water deficit stress on some physiological traits of wheat (Triticum aestivum). Agriculture Science Research Journal. 1, 64-68.

Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G. 2009. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology 150, 1855–1865.

Nayyar H, Gupta D. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environmental and Experimental Botany 58, 106-113.

Ohashi Y, Nakayama N, Saneoka H, Mohapata PK, Fujita K. 2009. Differences in the responses of stem diameter and pod thickness to drought stress during the grain filling stage in soybean plants. Acta Physiology Plant Journal 31, 271-277.

Ogawa A, Yamauchi A. 2006. Root Osmotic Adjustment under Osmotic Stress in Maize Seedlings. 2. Mode of Accumulation of Several Solutes for Osmotic Adjustment in the Root. Plant Production Sciences 9(1), 39-46.

Piwowarczyk B, Kamińska I, Rybiński W. 2014. Influence of PEG Generated Osmotic Stress on Shoot Regeneration and Some Biochemical Parameters in LathyrusCulture. Czech of Genetic and Plant Breeding Journal 50(2), 77-83.

Prado FE, Boero C, Gallarodo M, Gonzalez JA. 2000. Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoawilld. Seeds.Botanical Bulletin of Academia.Sinica 41, 27-34.

Rapparini F, Peñuelas J. 2014. Mycorrhizal Fungi to Alleviate Drought Stress on Plant Growth. In Miransari M. (ed) Use of Microbes for the Alleviation of Soil Stresses. Business Media. New York. Springer Science (1), 21-42.

Rampino P, Pataleo S, Gerardi C, Perotta C. 2006. Drought stress responses in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell and Environment. 29(12), 2143-2152.

Rao A, Ahmad SD, Sabir SM, Awan S, Shah AH, Khan MF, Khan SA, Shafique S, Arif S, Abbas SR, Gohar M. 2013. Antioxidant activity and lipid peroxidation of selected wheat cultivars under salt stress. Medicinal Plants Research Journal 7, 155-164.

Schlemmer MR,  Francis DD, Shanahan JF,  Schepers JS. 2005.  Remotely measuring chlorophyll content in com leaves with differing nitrogen levels and relative  water content. Agronomy Journal 97,  106-112.

Schonfeld MA, Johnson RC, Carver BF,  Mornhinweg DW. 1988. Water relations in winter wheat as drought resistance indicators. Crop Science 28, 526-531.

Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA. 1998. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Australia Journal of Plant Physiology 25, 609-616.

Silva MDA, Jifon JL, DA Silva JAG, Sharma V. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane.Brazilian of Plant Physiol Journal 19, 193-201.

Tambussi EA, Bort J, Guiamet JJ, Nogués S, Araus JL. 2007. The Photosynthetic Role of Ears in C3 Cereals: Metabolism, Water Use Efficiency and Contribution to Grain Yield. Critical Reviews in Plant Sciences Journal 26, 1-16.

Wang WX, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14.

Wilson JR, Fisher MJ, Schulze ED, Dolby GR Ludlow MM. 1979. Comparison between pressure-volume and dew point-hygrometry techniques for determining water relation characteristics of grass and legume leaves. Oecologia Journal 41, 77-88.

Wu QS, Xia RX. 2006. Arbuscularmycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163, 417–425.

Yadav DK, SrivastavaJP. 2017. Temporal Changes in Biochemical and Antioxidant Enzymes Activities in Maize (Zea mays L.) under Water logging Stress during Early Growth Stage International Journal of Current Microbiology and Applied Sciences 6(6), 351-362.

Ykhlef N, Djekoun A, Bensari M, VIgnes D. 1998.L’efficacitéd’utilisation de l’eau: Marqueurphysiologique de la résistance à la sécheresse chez le blédur (Triticum durumDesf.). Sciences Technologie 10,  87-92.

Ykhlef N, Djekoun A. 2000. Adaptation photosynthétique et résistance à la sécheresse chez le blédur (Triticumturgidum L. var. durum) :Analyse de la variabilité génotypique. Option Méditerranéennes 40,  327 -330.

Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, Wang G. 2010. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Molecular Biology Journal 72, 407-423.

Zhou Q, Yu BJ. 2009. Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed Vetiver grass seedling. Russian Journal of Plant Physiology 56(5), 678-685.