Insights of allelopathic, insecticidal and repellent potential of an invasive plant Sphaeranthus suaveolens in pest and weed management

Paper Details

Review Paper 01/08/2020
Views (284) Download (15)
current_issue_feature_image
publication_file

Insights of allelopathic, insecticidal and repellent potential of an invasive plant Sphaeranthus suaveolens in pest and weed management

Hudson Laizer, Musa Chacha, Patrick Ndakidemi
J. Bio. Env. Sci.17( 2), 101-112, August 2020.
Certificate: JBES 2020 [Generate Certificate]

Abstract

Sphaeranthus suaveolens is a weed from the family Asteraceae, it grows abundantly in wet areas and most common in rice fields. The extracts from plants closely related to S. suaveolens have been reported to have allelopathic, insecticidal, antifeedant, repellent, and other biological activities. Currently, the use of synthetic chemicals to control weeds and insect pests raise several concerns related to environment and human health. Extracts from plants with pesticidal properties can offer the best and an environmentally friendly alternative. Some of these extracts have been extensively tested to assess their applications as valuable natural resources in sustainable agriculture. This review article therefore explores the potential of S. suaveolens extracts in controlling insect pests and managing weeds by smallholder farmers.

VIEWS 17

Ahmed AA, Mahmoud AA. 1997. Carvotacetone derivatives from the Egyptian plant Sphaeranthus suaveolens. Phytochemistry 45(3), 533-535. https://doi.org/10.1016/S0031-9422(96)00840-0

Ahmed E, Arshad M, Zakriyya Khan M, Shoaib Amjad M, Mehreen Sadaf H, Riaz I, Sidra Sabir P, Ahmad N. 2017. Secondary metabolites and their multidimensional prospective in plant life. Journal of Pharmacognosy and Phytochemistry 6(2), 205-214.

Ajeigbe HA, Singh B, Adeosun J. 2010. On-farm evaluation of improved cowpea-cereals cropping systems for crop-livestock farmers : Cereals- cowpea systems in Sudan savanna zone of Nigeria. African Journal of Agricultural Research 5(17), 2297-2304.

Arivoli S, Tennyson S, Raveen R, Senthilkumar B, Govindarajan M. 2016. Larvicidal activity of fractions of Sphaeranthus indicus Linnaeus ( Asteraceae ) ethyl acetate whole plant extract against Aedes aegypti Linnaeus 1762 , Anopheles stephensi Liston 1901 and Culex quinquefasciatus Say 1823 ( Diptera : Culicidae ). International Journal of Mosquito Research 3(2), 18-30.

Azirak S, Karaman S. 2008. Allelopathic effect of some essential oils and components on germination of weed species. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 58(1), 88-92. https://doi.org/10.1080/09064710701228353

Baby JK. 1994. Reppelent and phagodeterrent activity of Sphaeranthus indicus extract against Callosobruchus chinensis. Proceedings of the 6th International Working Conference on Stored-Product Protection 746-748.

Bais HP, Vepachedu R, Gilroy S, Callaway R., Vivanco JM. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301(5638), 1377–1380. https://doi.org/10.1126/science.1083245

Batish DR, Singh HP, Kaur S. 2001. Crop Allelopathy and Its Role in Ecological Agriculture. Journal of Crop Protection 4(2), 121-161. https://doi. org/10.1300/J144v04n02

Benner JP. 1993. Pesticidal compounds from higher plants. Pesticide Science 39(5), 95-102. https://doi. org/10.1002/ps.2780390202

Brenan JPM. 1960. Flora of Tropical East Africa. Nature 188, 1142.

Céspedes CL, Salazar JR, Ariza-Castolo A, Yamaguchi L, Ávila JG, Aqueveque P, Kubo I, Alarcón J. 2014. Biopesticides from plants: Calceolaria integrifolia s.l. Environmental Research 132, 391-406. https://doi.org/10.1016/j.envres.2014.

Chancellor R. 1987. The Science of allelopathy Edited by A. R. Putnam and C. S. Tand. Wiley and Sons, New York, 1986, 317. Phytochemistry 26(5), 1554. https://doi.org/citeulike-article-id:5727856

Chitere PO, Omolo BA. 2008. Farmers’ indigenous knowledge of crop pests and their damage in western Kenya. International Journal of Pest Management 39(2), 126-132.

Dayan FE, Cantrell CL, Duke SO. 2009. Natural products in crop protection. Bioorganic and Medicinal Chemistry 17(12), 4022–4034. https://doi.org/10.1016/j.bmc.2009.01.046

De Pooter HL, De Buyck LF, Schamp NM, Harraz FM, El‐Shami IM. 1991. The essential oil of Sphaeranthus suaveolens DC. Flavour and Fragrance Journal 6(2), 157-159. https://doi.org/10.1002/ ffj.2730060213

Després L, David JP, Gallet C. 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution 22(6), 298-307. https://doi.org/10.1016/j.tree.2007.02.010

Dewick PM. 2009. Medicinal Natural Products A Biosynthetic Approach (3rd Edition). John Wiley & Sons, Ltd.

Dhale D. 2013. Ph ton plants used for insect and pest control in North Maharashtra , India. The Journal of Ethnobiology and Traditional Medicine 118(4), 379-388.

Einhellig FA. 1987. Interaction among allelochemicals and othe rstress factors of the plants environment. Allelochemicals: Role in Agriculture and Forestry 343-357.

Einhellig, Frank A, Leather GR. 1988. Potentials for exploiting allelopathy to enhance crop production. Journal of Chemical Ecology 14(10), 1829-1844. https://doi.org/10.1007/BF01013480

El-Wakeil NE. 2013. Botanical Pesticides and Their Mode of Action. Gesunde Pflanzen 65(4), 125-149. https://doi.org/10.1007/s10343-013-0308-3

Everard M, Kuria A, Macharia M, Vale JA, Harper DM. 2002. Aspects of the biodiversity of the rivers in the Lake Naivasha catchment. Hydrobiologia 488, 43-55.

Fahmy AGE. 1997. Evaluation of the weed flora of Egypt from Predynastic to Graeco-Roman times. Springer 6(4), 241-247.

Farooq M, Bajwa AA, Cheema SA, Cheema ZA. 2013. Application of allelopathy in crop production. International Journal of Agriculture and Biology 15(6), 1367-1378. https://doi.org/10.1002/ps.2091

Fayed A, Mohamed M. 1991. Systematic revision of Compositae in Egypt 5 Tribe Inuleae : Pulicaria and related genera. Wildenowia 20, 81-89.

Ferguson J, Rathinasabapathi B, Chase C. 2009. Allelopathy: How plants suppress other plants. UF/IFAS Extension. University of Florida 1-4.

Godfrey, C. R. A. 1994. Agrochemicals from Natural Products 17, 424. https://doi.org/10.1016/ 0167-8809(95)90095-0

Green PWC, Belmain SR, Ndakidemi PA, Farrell IW, Stevenson PC. 2017. Insecticidal activity of Tithonia diversifolia and Vernonia amygdalina. Industrial Crops and Products 110(3), 15-21. https://doi.org/10.1016/j.indcrop.2017.08.021

Gurib-Fakim A. 2006. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27(1), 1-93. https://doi.org/10. 1016/j.mam.2005.07.008

Haig T. 2008. Allelochemicals in plants. In Allelopathy in Sustainable Agriculture and Forestry (pp. 63-104). https://doi.org/10.1007/978-0-387-77

Hashemi SM, Damalas CA. 2010. Farmers ’ Perceptions of Pesticide Efficacy : Reflections on the Importance of Pest Management Practices Adoption. Journal of Sustainable Agriculture 35(1), 69-85. https://doi.org/10.1080/10440046.2011.530511

Hassanali H, Mwangi JW, Achola KJ, Lwande W. 1998. Aromatic plants of Kenya : volatile constituents of leaf oils of Sphaeranthus suaveolens ( Forsk ) D . C . and S . bullatus Mattf. East and Central African Journal of Pharmaceutical Sciences 1(1).

Hoagland RE. 2001. Microbial Allelochemicals and Pathogens as Bioherbicidal Agents. Weed Technology 15(4), 835-857.

Huis, Van A. 2014. Can we make IPM work for resource-poor farmers in sub-Saharan Africa ? Can we make IPM work for resource-poor farmers in sub-Saharan Africa ? International Journal of Pest Management 43(4), 313-320. https://doi.org/10. 1080/096708797228636

Hussain MI, Reigosa MJ. 2011. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. Journal of Experimental Botany 62(13), 4533-4545. https://doi.org/10.1093/jxb/err1

Ikerd JE. 1993. The need for a systems approach to sustainable agriculture 46, 147-160.

Ilori OJ, Otusanya OO, Adelusi AA, Sanni RO. 2010. Allelopathic activities of some weeds in the asteraceae family. In International Journal of Botany 6(12), pp. 161-163). https://doi.org/10.3923/ijb.201

Iqbal Z, Nasir H, Hiradate S, Fujii Y. 2006. Plant growth inhibitory activity of Lycoris radiata Herb. and the possible involvement of lycorine as an allelochemical. Weed Biology and Management 6(4), 221-227. https://doi.org/10.1111/j.1445-6664.2006.

Isman MB. 2006a. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annual Review of Entomology 51(1), 45-66.

Isman MB. 2006b. Botanical insecticides, deterrents amd repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51, 45-66. https://doi.org/10.1146/annu

Isman MB, Grieneisen ML. 2014. Botanical insecticide research : many publications , limited useful data. Trends in Plant Science 19(3), 140-145.

Jabran K, Mahajan G, Sardana V, Chauhan BS. 2015. Allelopathy for weed control in agricultural systems. Crop Protection 72, 57-65.

Jakupovic J, Grenz M, Bohlmann F, Mungai GM. 1990. Carvotacetone derivatives and eudesman-12,6/β-olides from sphaeranthus species. Phytochemistry 29(4), 1213-1217.

Jamil M, Cheema ZA, Mushtaq MN, Farooq M, Cheema MA, Cheema MA. 2009. Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts. Agronomy for Sustainable Development 29(3), 475-482. https:// doi.org/10.1051/agro/2009007

Joseph B, Dar MA, Kumar V. 2008. Bioefficacy of Plant Extracts to Control Fusarium solani F . Sp . Melongenae incitant of Brinjal Wilt. Global Journal of Biotechnology and Biochemistry 3(2), 56-59.

Kaur M, Kumar R, Upendrabhai DP, Singh IP, Kaur S. 2017. Impact of sesquiterpenes from Inula racemosa (Asteraceae) on growth, development and nutrition of Spodoptera litura (Lepidoptera: Noctuidae) Mandeep. Pest Management Science 73, 1031-1038.

Kelly V, Adesina AA, Gordon A. 2003. Expanding access to agricultural inputs in Africa: A review of recent market development experience. Food Policy 28(4), 379-404. https://doi.org/10. 1016/j.foodpol.2003.08.006

Khan M, Damalas CA. 2015. Farmers’ knowledge about common pests and pesticide safety in conventional cotton production in Pakistan. Crop Protection 77, 45-51. https://doi.org/10.1016/j. cropro.2015.07.014

Khan ZR, Midega CAO, Bruce TJA, Hooper AM, Pickett JA. 2010. Exploiting phytochemicals for developing a‘ push – pull ’ crop protection strategy for cereal farmers in Africa. Journal of Experimental Botany 61(15), 4185-4196. https://doi.org/10.1093

Khanh TD, Chung IM, Tawata S, Xuan TD. 2006. Weed suppression by Passiflora edulis and its potential allelochemicals. Weed Research 46(4), 296-303. https://doi.org/10.1111/j.1365-3180.2006.00512.x

Khanh TD, Chung MI, Xuan TD, Tawata S. 2005. Cropping and Forage Systems / Crop Ecology / Organic Farming The Exploitation of Crop Allelopathy in Sustainable Agricultural Production. Journal of Agronomy and Crop Science 191(10), 172-184. https://doi.org/10.1111/j.1439-037X.2005.00172.x

Kim SIl, Roh JY, Kim DH, Lee HS, Ahn YJ. 2003. Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. Journal of Stored Products Research 39(3), 293-303. https://doi.org/10.1016/ S0022-474X(02)00017-6

Kleinowski AM, Ribeieo GA, Milech C, Braga EJB. 2016. Potential allelopathic and antibacterial activity from Alternanthera philoxeroides. Hoehnea 43(4), 533-540.

Kohli R, Singh HP, Batish DR. 2008. Allelopathic potential in rice germplasm against ducksalad, redstem and barnyard grass. Journal of Crop Protection 4(2), 287-301. https://doi.org/10.1300/J144v04n02

Kong CH, Wang P, Xu XH. 2007. Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum). Agriculture, Ecosystems and Environment 119(3-4), 416-420. https://doi.org/10.1016/j.agee.2006

Kremer RJ, Ben-Hammouda M. 2009. Allelopathic plants. 19. Barley (Hordeum vulgare L). Allelopathy Journal 24(2), 225-242.

Li ZH, Wang Q, Ruan X, Pan C De, Jiang DA. 2010. Phenolics and plant allelopathy. Molecules 15(12), 8933-8952. https://doi.org/10.3390/molecul

Lodha V. 2004. Germination and seedling vigour of some major crop plants as influenced by allelopathy of Sphaeranthus indicus. Indian Journal Plant Physiology 9(2), 195-198.

Macías FA, Molinillo JMG, Galindo JCG, Varela RM, Simonet AM, Castellano D. 2001. The use of Allelopathic Studies in the Search for Natural Herbicides. Journal of Crop Production 4(2), 237-255. https://doi.org/10.1300/J144v04n02_08

Macías FA, Molinillo JMG, Varela RM, Galindo JC. 2007. Allelopathy – A natural alternative for weed control. Pest Management Science 63(4), 327-348.

Macías FA, Oliveros-Bastidas A, Marín D, Chinchilla N, Castellano D, Molinillo JMG. 2014. Evidence for an allelopathic interaction between rye and wild oats. Journal of Agricultural and Food Chemistry 62(39), 9450-9457. https://doi. org/10.1021/jf503840d

Mahajan NG, Chopda MZ, Mahajan RT. 2015. A Review on Sphaeranthus indicus Linn: Multipotential Medicinal Plant. International Journal of Pharmaceutical Research and Allied Sciences 4(3), 48-74.

Maia MF, Moore S. 2011. Plant-based insect repellents: a review of their efficacy, development and testing. Malaria Journal 10(1). https://doi.org/ 10.1186/1475-2875-10-S1-S11

Midega CAO, Nyang’au IM, Pittchar J, Birkett MA, Pickett JA, Borges M, Khan ZR. 2012. Farmers’ perceptions of cotton pests and their management in western Kenya. Crop Protection 42, 193-201. https://doi.org/10.1016/j.cropro.2012.07.0

Miresmailli S, Isman MB. 2014. Botanical insecticides inspired by plant – herbivore chemical interactions. Trends in Plant Science 19(1), 29-35. https://doi.org/10.1016/j.tplants.2013.10.002

Mkenda PA, Ndakidemi PA, Stevenson PC, Sarah EJ, Darbyshire I, Belmain SR, Priebe J, Johnson AC, Gurr GM, Tumbo J. 2020. Knowledge gaps among smallholder farmers hinder adoption of conservation biological control. Biocontrol Science and Technology 0(0), 1-22. https://doi.org/10.1080/09583157.2019.1707169

Mkenda P, Mwanauta R, Stevenson PC, Ndakidemi P. 2015. Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides. PLoS ONE 10(11).

Mkindi A, Mpumi N, Tembo Y, Stevenson PC, Ndakidemi PA, Mtei K, Machunda R, Belmain SR. 2017. Invasive weeds with pesticidal properties as potential new crops. Industrial Crops and Products 110(3), 113-122. https://doi.org/10.1016/j.indcrop.

Mligo C. 2017. Diversity and distribution pattern of riparian plant species in the Wami River system, Tanzania. Journal of Plant Ecology 10(2), 259-270. https://doi.org/10.1093/jpe/rtw021

Food and Agriculture Organization of the United Nations. 2016. The State of Food and Agriculture 2016 (SOFA): Climate change, agriculture and food security. In Livestock in the Balance. https://doi.org/ISBN: 978-92-5-107671-2 I

Nattudurai G, Paulraj MG, Ignacimuthu S. 2012. Fumigant toxicity of volatile synthetic compounds and natural oils against red flour beetle Tribolium castaneum (Herbst) (Coleopetera: Tenebrionidae). Journal of King Saud University – Science 24(2), 153-159. https://doi. org/10.1016/j .jksus.2010.11.002

Neerman MF. 2003. Sesquiterpene lactones: A diverse class of compounds found in essential oils possessing antibacterial and antifungal properties. International Journal of Aromatherapy 13(2-3), 114-120. https://doi.org/10.1016/S0962-4562(03)00078-X

Ngondya IB, Munishi L, Treydte AC, Ndakidemi PA. 2016. Demonstrative effects of crude extracts of Desmodium spp . to fi ght against the invasive weed species Tagetes minuta. Acta Ecologica Sinica 36(2), 113-118. https://doi.org/10. 1016/j.chnaes.2016.03.001

Ngowi AVF, Mbise TJ, Ijani ASM, London L, Ajayi OC. 2007. Smallholder vegetable farmers in Northern Tanzania: Pesticides use practices, perceptions, cost and health effects. Crop Protection 26(11), 1617-1624. https://doi.org/10.1016/j.cropro.

Osman AK. 2011. Numerical taxonomic study of some tribes of compositae (subfamily Asteroideae) from Egypt. Pakistan Journal of Botany 43(1), 171-180.

Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK. 2015. Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy 9(3), 293-304.

Parker JE, Snyder WE, Hamilton GC, Saona CR. 2013. Companion Planting and Insect Pest Control 1-30.

Patole SS, Chopda MZ, Mahajan RT. 2008. Biocidal activities of a common weed, Sphaeranthus indicus Linn. Journal of Zoology 28(1), 67-72.

Pretty J,  Bharucha ZP. 2015. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects 6, 152-182. https://doi.org/10.3390/insects6010152

Pugazhvendan SR, Ross PR, Elumalai K. 2012. Insecticidal and repellant activities of plants oil against stored grain pest, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Asian Pacific Journal of Tropical Disease 2(1), 1-5. https://doi.org/ 10.1016/S2222-1808(12)60193-5

Qasem JR, Foy CL. 2001. Weed Allelopathy, Its Ecological Impacts and Future Prospects. Journal of Crop Production 4(2), 43-119. https://doi.org/10. 1300/J144v04n02_02

Ramakrishna A, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior 6(11), 1720-1731. https://doi.org/10.4161/psb.6.11.

Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM. 2016. Biosynthesis of essential oils in aromatic plants: A review. Food Reviews International 32(2), 117-160.

Schoonhoven LM, Van Loon JJA, Dick M. 2005. Insect-Plant Biology. Journal of Chemical Information and Modeling 441.

Singh HP, Batish DR, Kohli RK. 2003. Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Critical Reviews in Plant Sciences 22(3-4), 239-311.

Singh P, Shrivastava R. 2012. Insecticidal activity of acetone crude extract of Sphaeranthus indicus Lin. (Family- Asteraceae) Callosobruches maculatus. International Journal of Pharmaceutical Research and Development 3(11), 126-128.

Sosa A, Diaz M, Salvatore A, Bardon A, Borkosky S, Vera N. 2018. Insecticidal effects of Vernonanthura nebularum against two economically important pest insects. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2018.01.005

Stephen OD, Dayan FE, Rimando AM, Schrader KK, Aliotta G, Oliva A, Romagni JG. 2002. Chemicals from Nature for Weed Management. Weed Science 50(2), 138-151.

Tembo Y, Mkindi AG, Mkenda PA, Mpumi N, Mwanauta R, Stevenson PC, Ndakidemi PA, Belmain SR. 2018. Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Frontiers in Plant Science 9(1425).

Toda S, Morishita M. 2009. Identification of Three Point Mutations on the Sodium Channel Gene in Pyrethroid-Resistant Thrips tabaci (Thysanoptera : Thripidae) Identification of Three Point Mutations on the Sodium Channel Gene in Pyrethroid-Resistant Thrips tabaci : Journal of Economic Entomology 102(6), 2296-2300.

Vyvyan JR. 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58(9), 1631-1646. https://doi.org/10.1016/S0040-4020(02)

Whitbread AM, Robertson MJ, Carberry PS, Dimes JP. 2010. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. European Journal of Agronomy 32(1), 51-58. https://doi.org/10.1016/j.eja.2009.05.004

Whittaker RH, Feeny PP. 1971. Allelochemics: Chemi Interactionsbetween Species. 171(3973).

Williamson SBall A, Pretty J. 2008. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Protection 27(10), 1327-1334. https://doi.org/10.1016/j.cropro.2008.04.

Wu H, bo Wu H, bin Wang W, shu Liu T, ting Qi M, ge Feng J, chao Li X, yuan & Liu Y. 2016. Insecticidal activity of sesquiterpene lactones and monoterpenoid from the fruits of Carpesium abrotanoides. Industrial Crops and Products 92, 77-83. https://doi.org/10.1016/j.indcrop.2016.07.046

Xuan TD, Eiji T, Shinkichi T, Khanh TD. 2004. Methods to determine allelopathic potential of crop plants for weed control. Allelopathy Journal 13(2), 149-164.

Zhou B, Kong CH, Li YH, Wang P, Xu XH. 2013. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. Journal of Agricultural and Food Chemistry 61(22), 5310-5317. https://doi.org/10.1021/jf401605g