Insilico identification and characterization of abiotic stress responsive genes in Cucumis melo L. using bioinformatics tools

Paper Details

Research Paper 01/12/2021
Views (679)
current_issue_feature_image
publication_file

Insilico identification and characterization of abiotic stress responsive genes in Cucumis melo L. using bioinformatics tools

Asyia, Bibi Sadia, Wajia Noor , Shazia Irfan, Yasmeen Rehmat
Int. J. Biosci. 19(6), 173-182, December 2021.
Copyright Statement: Copyright 2021; The Author(s).
License: CC BY-NC 4.0

Abstract

Plants are exposed to various abiotic stress responsive genes. The present study was designed to investigate cold, drought and salt stress responsive genes in Cucumis melo L. for regulation of gene expression as 101273 ESTs of Cucumis melo L. and 3702 ESTs of Arabidopsis thaliana were explored for insilico of twenty one abiotic stress responsive genes. RAB18 (96%), CSD1 (94%), HVA22A (86%) GSTF7 (73%), CDSP32 (65%), ATMRK1 (65%) MPK3 (63%), ELIP1 (59%), COR47 (56%), ERD14 (42%), DDF1 (42%) DI19 (41%), LOS4 (40%), ABCF3 (37%), P5CS1 (36%), CDPK1 (27%), DREB2A (23%), STZ (18%) and HOS10 (57%) gene was expressed in three stresses cold drought and salt. Bioinformatics tools NCBI, ORF, BLAST, CDD, and MUSCLE were used to find out homology, conserved domains then conserved analysis of nucleotides and phylogenetic analysis of Cucumis melo L. The current study revealed that similarly conserved domain families in Arabidopsis thaliana and Cucumis melo L. were Ras super-family (RAB18), Cu-Zn-superoxide-Disntase super-family (CSD1), TB2-DP1-HVA22 super-family (HVA22A), GST-N-Phi thioredoxin-like super family (GSTF7), TRX-COSP32 (CDSP32), PKc-like super-family (ATMRK1), (MPK3), ), Chloroa-b-bind super-family (ELIP1), Dehydrin super-family (COR47,(ERD14), AP2 super-family (DDF1), Zf-Di19 super family (DI19), DEXDc super-family (LOS4), SunT super-family (HOS10) and (ABCF3), PROB super-family (P5CS1)and Zf-C2H2-6 super-family (STZ). Phylogenetic results revealed interesting fact although genes DI19, DREB2A, CDPK1 were more closely related to in Arabidopsis thaliana and Cucumis mel L. beside this ATMRK1, ERD14, LOS4, MPK3,CDSP32, P5CS1 not showing close relations.

Adams CF, Richardson M. 1981. Nutritive value of foods. USDA Home and Garden.

Barozai MYK, Wahid AH. 2012. Insilico identification and characterization cumulative abiotic stress responding genes in Potato (Solanum tuberosum L.). Pak. J. Bot 44, 57-69

Bohnert HJ, Nelson DE, Jensen RG. 1995. Adaptations to environmental stresses. The plant cell 7(7), 1099.

Bray EA. 1993. Molecular responses to water deficit. Plant physiology 103(4), 1035

Lester G. 1997. Melon (Cucumis melo L.) fruit nutritional quality and health functionality. Hort Technology 7(3), 222-227.

Lytton J. 2004. The cation/Ca2+ exchanger superfamily: phylogenetic analysis and structural implications. Molecular biology and evolution 21(9), 1692-170

Ma Y, Qin F, Tran LSP. 2012. Contribution of genomics to gene discovery in plant abiotic stress responses. Molecular plant 5(6), 1176-1178.

Mittler R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science 11(1), 15-19.

Munger HM, Robinson RW. 1991. Nomenclature of Cucumis melo Cucurbit Genet.

Prabha R, Ghosh I, Singh DP. 2011. Plant Stress Gene Database: A collection of plant genes responding to stress condition. ARPN J. Sci. Technol 1, 28-31.

Reymond P, Weber H, Damond M, Farmer EE. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell 12(5), 707-719.

Rhee SY, Dickerson J, Xu D. 2006. Bioinformatics and its applications in plant biology. Annu. Rev. Plant Biol 57, 335-360.

Rhee SY, Dickerson J, Xu D. 2006. Bioinformatics and its applications in plant biology. Annu. Rev. Plant Biol 57, 335-360.

Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 134(4), 1683-1696.

Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current opinion in plant biology 4(5), 447-456.

Yamaguchi K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol 57, 781-803.

Related Articles

Lipid peroxidation and antioxidant status in 2,4,6-octatrienoic acid treated A549 and HCT-116 cancer cells

Shanmugam M. Sivasankaran, Raju Kowsalya, Krishnan Baskaran, Chakravarthy Elanchezhiyan, Int. J. Biosci. 27(1), 291-296, July 2025.

Public health implications of microbial contamination in registered slaughterhouses: A case study from La Union, Philippines

Carlo G. Fernandez, Harlene S. Fernandez, Priscilo P. Fontanilla Jr., Reinalyn D. Austria, Int. J. Biosci. 27(1), 272-290, July 2025.

Heterocyclic pyrazoline’s derivatives exhibiting promising potential antidiabetic activity

Mohd Akil, Farah Siddiqui, Amar Chandra Sharma, Mirza Masroor Ali Beg, Iqbal Azad, Firoz Hassan, Abdul Rahman Khan, Naseem Ahmad, Benjamin Siddiqui, Int. J. Biosci. 27(1), 244-271, July 2025.

Harnessing mangrove ecosystems for CO2 sequestration: Insights from remote sensing and GIS technologies

Anas Bin Firoz, Vaishaly Saranaathan, Swagata Chakraborty, Thoti Damodharam, Munisamy Govindaraju, Int. J. Biosci. 27(1), 225-243, July 2025.

Zootechnical performances of djallonké sheep supplemented with cocoa bean fragments, fruits, and leaves of Cajanus cajan in Côte D’ivoire

Ané François De Paul Atsé, Jacques Yao Datté, Sidiki Sangaré, Alassane Méïté, Int. J. Biosci. 27(1), 213-224, July 2025.

Cultivation and nutritional analysis of Pleurotus sp. from different substrates

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, Int. J. Biosci. 27(1), 204-212, July 2025.

Crinum asiaticum L. bulb extracts as a potential source of novel antimicrobial agents: An in-vitro study

K. Gowthaman, P. Prakash, V. Ambikapathy, S. Babu, A. Panneerselvam, Int. J. Biosci. 27(1), 194-203, July 2025.