Insulin resistance and anthropometric parameters: A cross-sectional study in adult men

Paper Details

Research Paper 01/04/2013
Views (417) Download (9)

Insulin resistance and anthropometric parameters: A cross-sectional study in adult men

Sokhanguei Yahya
Int. J. Biosci.3( 4), 228-233, April 2013.
Certificate: IJB 2013 [Generate Certificate]


To determine relationship between insulin resistance and anthropometrical indexes, twenty four healthy sedentary men aged 33 ± 3.8 years were participated in this study by accessible sampling. Fasting serum of all participants were collected in order to measuring insulin and glucose for calculation insulin resistance after an overnight fast. Body weight, body fat percentage, body mass index (BMI) and other parameters of anthropometrical indexes were also measured in all subjects. The correlations between variables were determined using the bivariate correlation test. High positive associations was observed between insulin resistance with all anthropometrical indexes as body weight (p = 0.005, r = 0.533), body fat percentage (p = 0.002, r = 0.600), visceral fat (p = 0.000, r = 0.750), BMI (p = 0.000, r = 0.711) and other anthropometrical markers in studied subjects. Based on these data, we can suggest anthropometrical markers as a precise predictor of insulin resistance in obese men.


Alberti KG, Zimmet P, Shaw J. 2006. Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabetic Medicine 23(5), 469-80.

Ana Carolina V, Lina R, Gilberto R, Rita de Cassia R, Sylvia F, Bruno G. 2010. Anthropometric indicators of insulin resistance. Arquivos Brasileiros de Cardiologia 95(1), 14-22.

Balkau B, Charles MA. 1999. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabetic Medicine 16(5), 442-3.

Dengel DR, Hagberg JM, Pratley RE, Rogus EM, Goldberg AP. 1998. Improvements in blood pressure, glucose metabolism, and lipoprotein lipids after aerobic exercise plus weight loss in obese, hypertensive middle-aged men. Metabolism 47, 1075-1082.

Dixon JB, Dixon AF, O’Brien PE. 2003. Improvements in insulin sensitivity and β- cell function (HOMA) with weight loss in the severely obese. Diabetic Medicine 20(2), 127-34.

Duncan GE, Li SM, Zhou XH. 2004. Prevalence and trends of a metabolic syndrome phenotype among U.S. adolescents, 1999–2000. Diabetes Care 27, 2438–2443.

Facchini FS, Hua N, Abbasi F, Reaven GM. 2001. Insulin resistance as a predictor of age-related diseases. Journal of Clinical Endocrinology & Metabolism 86, 3574-8.

Koebnick C, Roberts CK, Shaibi GQ, Kelly LA, Lane CJ, Toledo-Corral CM. 2008.  Adiponectin and Leptin are Independently Associated with Insulin Sensitivity, but not with Insulin Secretion or Beta-cell Function in Overweight Hispanic Adolescents. Hormone Metabolic Research Journal 40(10), 708-12.

Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH. 1991. Development of muscle insulin resistance after liver insulin resistance in high fat fed rats. Diabetes 40, 1397–403.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. 1985. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7), 412-419.

Monteiro JC. Obesidade. 1998. diagnóstico, métodos e fundamentos. In: Halpern A, Matos AFG, Suplicy HL, Mancini MC, Zanella MT. Obesidade. São Paulo: Lemos p. 31.

Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF. 2007. Disruption of leptin receptor expression in the pancreas directly affects β cell growth and function in mice. Journal of Clinical Investigation 117(10), 2860-8.

Park S, Hong SM, Lee JE, Sung SR. 2007. Exercise improves glucose homeostasis that has been impaired by a high-fat diet by potentiating pancreatic B- cell function and mass through IRS2 in diabetic rats. Journal of Applied Physiology 103(5), 1764-71.

Polonsky KS, Gumbiner B, Ostrega D, Griver K, Tager H, Henry RR. 1994. Alterations in immunoreactive proinsulin and insulin clearance induced by weight loss in NIDDM. Diabetes 43, 871-877.

Rabinowitz D, Zierler KL. 1962. Forearm metabolism in obesity and its response to intra-arterial insulin: characterization of insulin resistance and evidence for adaptive hyperinsulinism. Journal of Clinical Investigation 41, 2173–2181.

Reaven GM. 1995. The fourth Musketeer from Alexandre Dumas to Claude Bernard. Diabetologia 38, 3–13.

Ribeiro Filho FF, Mariosa LS, Ferreira SR, Zanella MT. 2006. Gordura visceral e syndrome metabólica: mais que uma simple’s associação. Arquivos Brasileiros de Endocrinologia & Metabologia 50(2), 230-8.

Silva EA, Flexa F, Zanella MT. 2007. Obesidade abdominal, resistência à insulina e hipertensão: impacto  sobre  a  massa  e  a  função  do  ventrículo esquerdo em mulheres. Arquivos Brasileiros de Cardiologia 89(2), 86-92.

Sjostrom CD, Lissner L, Wedel H, Sjostrom L. 1999. Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. Obesity Research 7, 477-484.

Spiegelman BM, Flier JS. 1996. Adipogenesis and obesity: rounding out the big picture. Cell 87(3), 377-89.

Storlien LH, Higgins JA, Thomas TC. 2000. Diet composition and insulin action in animal models. British Journal of Nutrition 83, 85–90.

Weisberg SP,McCann D,Desai M,Rosenbaum M, Leibe lRL. 2003. Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112, 1796–1808.