Involvement of Colobus polykomos and Procolobus verus in polyspecific associations with other sympatric monkeys in Taï National Park, south-west Côte d’Ivoire

Paper Details

Research Paper 03/10/2024
Views (363)
current_issue_feature_image
publication_file

Involvement of Colobus polykomos and Procolobus verus in polyspecific associations with other sympatric monkeys in Taï National Park, south-west Côte d’Ivoire

Prince Dégny Vale, Akissi Kouakou, Célestin Yao Kouakou, Béné Jean-Claude Koffi, Abdoulaye Diarrassouba, Adama Tondossama
J. Biodiv. & Environ. Sci. 25(4), 30-39, October 2024.
Copyright Statement: Copyright 2024; The Author(s).
License: CC BY-NC 4.0

Abstract

Polyspecific associations, observed in many vertebrates in natural environments, are particularly studied in primates of tropical forests due to the evolutionary and survival advantages they offer. However, understanding the associational dynamics between certain species, notably the King colobus and the Olive colobus in the Tai National Park (TNP) in Côte d’Ivoire, remains limited. Our study, based on a comprehensive analysis of ecological monitoring data from the TNP over 12 years, aimed to understand the associational dynamics of the King colobus, Olive colobus, and other Cercopithecines, as well as anthropogenic factors influencing their distribution in the TNP. The results reveal diverse associations among Cercopithecids in the TNP, involving up to seven species across the entire park. The Diana monkey stands out as a nuclear species, frequently associated with the King colobus. In contrast, the Olive colobus, due to its discreet nature, shows a low rate of observation in polyspecific associations. Our findings support the notion that primate associations follow an evolutionary trend primarily aimed at reducing the risk of predation. The study emphasizes the importance of understanding these associational dynamics to guide TNP management strategies, facing anthropogenic threats such as poaching. A more detailed approach, incorporating ethological aspects, is recommended for a better understanding of interactions among TNP primate species. These results lay the groundwork for future research to deepen the understanding of underlying mechanisms in these associations, contributing to the development of conservation strategies suitable for the complex environments of tropical forests.

Amaral PP, Ragusa-Netto J. 2008. Bird mixed-flocks and nuclear species in a tecoma savanna in the Pantanal. Brazilian Journal of Biology 68, 511–518.

Bangal P, Sridhar H. 2023. Revisiting the ‘nuclear species’ concept: do we really know what we think we know? Philosophical Transactions of the Royal Society B: Biological Sciences 378(1878), 20220108. https://doi.org/10.1098/rstb.2022.0108

Bene J-CK, Ouattara K, Bitty EA, Inza K. 2012. Combination Calls in Olive Colobus Monkeys (Procolobus verus) in Tai National Park, Côte d’Ivoire. Journal of Asian Scientific Research 2(9), 466.

Bene KJ, Kone I, Zuberbuhler K. 2007. Répertoire et contextes sociaux des cris unitaires du colobe vert (Procolobus verus) dans le Parc National de Taï (PNT), Côte d’Ivoire. Sciences & Nature 4(2), 137–147.

Boesch C, Boesch-Achermann H. 2000. The chimpanzees of the Taï forest: behavioural ecology and evolution. Oxford (USA): Oxford University Press, 326p.

Bryer MA, Chapman CA, Rothman JM. 2013. Diet and polyspecific associations affect spatial patterns among redtail monkeys (Cercopithecus ascanius). Behaviour 150, 277–293.

Bshary R. 2001. Diana monkeys, Cercopithecus diana, adjust their anti-predator response behaviour to human hunting strategies. Behavioral Ecology and Sociobiology 50(3), 251–256.

Buckland ST, Anderson DR, Burnham KP, Laake JL. 1993. Line transects. In: Distance Sampling. Springer; p. 104–140.

Buzzard PJ. 2006. Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the Taï Forest. International Journal of Primatology 27(2), 529–558.

Buzzard PJ. 2010. Polyspecific associations of Cercopithecus campbelli and C. petaurista with C. diana: what are the costs and benefits? Primates 51(4), 307–314. https://doi.org/10.1007/s10329-010-0203-9

Collinet J, Monteny B, Pouyaud B. 1984. Le milieu physique. In: Guillaumet JL, Couturier G, Dosso H, editors. Recherche et aménagement en milieu forestier tropical humide: le Projet Taï de Côte d’Ivoire. Paris: UNESCO; p. 35–58.

Dasilva GL. 1994. Diet of Colobus polykomos on Tiwai Island: Selection of food in relation to its seasonal abundance and nutritional quality. International Journal of Primatology 15(5), 655–680. https://doi.org/10.1007/BF02737426

De Carvalho Oliveira L, De Almeida Rocha JM, Dos Reis PP, Dietz J. 2017. Preliminary findings on social and ecological correlates of a polyspecific association between a golden-headed lion tamarin (Leontopithecus chrysomelas) and Wied’s marmosets (Callithrix kuhlii). Primates 58(1), 179–186. https://doi.org/10.1007/s10329-016-0580-9

Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A, Nekaris KAI, Nijman V, Heymann EW, Lambert JE. 2017. Impending extinction crisis of the world’s primates: why primates matter. Vietnamese Journal of Primatology 2(5), 1–24.

Fa JE, Nasi R, Van Vliet N. 2019. Viande de brousse, impacts anthropiques et santé humaine dans les forêts tropicales humides: le cas du virus Ebola. Sante Publique 1(HS1), 107–114.

Ferreguetti A, Allemand MM, Pereira-Ribeiro J, Tomas WM, Rocha CF, Bergallo HG, Miller DA. 2023. Don’t shoot! How poaching may affect richness, biomass, and occupancy of non-volant mammals in an Atlantic Forest protected area, Brazil [Internet]. [Accessed 2024 Feb 19]. https://www.researchsquare.com/article/rs-2681323/latest

Gatti RC, Ugarkovic P, Tiralongo F. 2021. New evidence of a fish–bird interspecific feeding association between the European seabass and the European shag in the Mediterranean Sea. Aquatic Ecology 55(3), 1113–1119. https://doi.org/10.1007/s10452-021-09868-z

Gogarten JF, Bonnell TR, Brown LM, Campenni M, Wasserman MD, Chapman CA. 2014. Increasing group size alters behavior of a folivorous primate. International Journal of Primatology 35(2), 590–608.

Hutchinson JMC, Waser PM. 2007. Use, misuse, and extensions of “ideal gas” models of animal encounter. Biological Reviews 82(3), 335–359. https://doi.org/10.1111/j.1469-185X.2007.00014.x

Kane EE, McGraw WS. 2017. Dietary variation in Diana monkeys (Cercopithecus diana): the effects of polyspecific associations. Folia Primatologica 88(6), 455–482.

Kurihara Y, Hanya G. 2015. Comparison of feeding behavior between two different-sized groups of Japanese macaques (Macaca fuscata yakui). American Journal of Primatology 77(9), 986–1000. https://doi.org/10.1002/ajp.22429

Noë R, Bshary R. 1997. The formation of red colobus–diana monkey associations under predation pressure from chimpanzees. Proceedings of the Royal Society of London Series B: Biological Sciences 264(1379), 253–259. https://doi.org/10.1098/rspb.1997.0036

Nyenswah T, Fahnbulleh M, Massaquoi M, Nagbe T, Bawo L, Falla JD, Kohar H, Gasasira A, Nabeth P, Yett S. 2014. Ebola epidemic—Liberia, March–October 2014. Morbidity and Mortality Weekly Report 63(46), 1082.

Oates JF, Whitesides GH. 1990. Association between olive colobus (Procolobus verus), Diana guenons (Cercopithecus diana), and other forest monkeys in Sierra Leone. American Journal of Primatology 21(2), 129–146. https://doi.org/10.1002/ajp.1350210206

Oates JF. 1988. The diet of the olive colobus monkey, Procolobus verus, in Sierra Leone. International Journal of Primatology 9(5), 457–478. https://doi.org/10.1007/BF02736220

Pinheiro T, Ferrari SF, Lopes MA. 2011. Polyspecific associations between squirrel monkeys (Saimiri sciureus) and other primates in eastern Amazonia. American Journal of Primatology 73(11), 1145–1151. https://doi.org/10.1002/ajp.20981

Shaffer CA, Barnett AA, Gregory T, De Melo F, Moreira L, Alvim THG, Moura VS, Filó A, Cardoso T, PortCarvalho M, et al. 2016. Mixed‐species associations in cuxiús (genus Chiropotes). American Journal of Primatology 78(5), 583–597. https://doi.org/10.1002/ajp.22433

Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT. 1987. Primate Societies. Chicago: Univ: Chicago Press.

Stensland E, Angerbjörn A, Berggren P. 2003. Mixed species groups in mammals. Mammal Review 33(3–4), 205–223. https://doi.org/10.1046/j.1365-2907.2003.00022.x

Terborgh J, Van Schaik CP, Davenport L, Madhu R. 2002. Making parks work: strategies for preserving tropical nature. In: Terborgh John, Van Schaik CP, Davenport L, Madhu Rao, editors. Making parks work: strategies for preserving tropical nature. Island Press, Washington, D.C. (USA), 487p.

Tiedou MR, Koné SS, Diarrassouba A, Tondossama A. 2018. Etat de conservation du Parc national de Taï: Résultats du suivi écologique, Phase 12. Office Ivoirien des Parcs et Réserves/Direction de Zone Sud-ouest. Soubré, Côte d’Ivoire. 37p.

White L, Edwards A. 2000. Conservation research in the African. Conservation research in the African [Internet]. [Accessed 2023 Oct 17]. https://www.researchgate.net/publication/277813627_Conservation_Research_in_the_African_Rain_Forest_A_Technical_Handbook

Whitesides GH. 1989. Interspecific associations of Diana monkeys, Cercopithecus diana, in Sierra Leone, West Africa: biological significance or chance? Animal Behaviour 37, 760–776.

Whytock RC, Abwe EE, Mfossa DM, Ketchen ME, Abwe AE, Nguimdo VR, Maisels F, Strindberg S, Morgan BJ. 2021. Mammal distribution and trends in the threatened Ebo ‘intact forest landscape’, Cameroon. Global Ecology and Conservation 31, e01833.

Related Articles

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.

Conservation and trade dynamics of non-timber forest products in local markets in south western Cameroon

Kato Samuel Namuene, Mojoko Fiona Mbella, Godswill Ntsomboh-Ntsefong, Eunice Waki, Hudjicarel Kiekeh, J. Biodiv. & Environ. Sci. 27(2), 58-69, August 2025.

Overemphasis on blue carbon leads to biodiversity loss: A case study on subsidence coastal wetlands in southwest Taiwan

Yih-Tsong Ueng, Feng-Jiau Lin, Ya-Wen Hsiao, Perng-Sheng Chen, Hsiao-Yun Chang, J. Biodiv. & Environ. Sci. 27(2), 46-57, August 2025.

An assessment of the current scenario of biodiversity in Ghana in the context of climate change

Patrick Aaniamenga Bowan, Francis Tuuli Gamuo Junior, J. Biodiv. & Environ. Sci. 27(2), 35-45, August 2025.

Entomofaunal diversity in cowpea [Vigna unguiculata (L.) Walp.] cultivation systems within the cotton-growing zone of central Benin

Lionel Zadji, Roland Bocco, Mohamed Yaya, Abdou-Abou-Bakari Lassissi, Raphael Okounou Toko, J. Biodiv. & Environ. Sci. 27(2), 21-34, August 2025.

Biogenic fabrication of biochar-functionalized iron oxide nanoparticles using Miscanthus sinensis for oxytetracycline removal and toxicological assessment

Meenakshi Sundaram Sharmila, Gurusamy, Annadurai, J. Biodiv. & Environ. Sci. 27(2), 10-20, August 2025.

Bacteriological analysis of selected fishes sold in wet markets in Tuguegarao city, Cagayan, Philippines

Lara Melissa G. Luis, Jay Andrea Vea D. Israel, Dorina D. Sabatin, Gina M. Zamora, Julius T. Capili, J. Biodiv. & Environ. Sci. 27(2), 1-9, August 2025.

Effect of different substrates on the domestication of Saba comorensis (Bojer) Pichon (Apocynaceae), a spontaneous plant used in agroforestry system

Claude Bernard Aké*1, Bi Irié Honoré Ta2, Adjo Annie Yvette Assalé1, Yao Sadaiou Sabas Barima1, J. Biodiv. & Environ. Sci. 27(1), 90-96, July 2025.