Is antibacterial PNA the answer for combating multidrug resistant bacterial infections?

Paper Details

Mini Review 01/01/2017
Views (235) Download (13)

Is antibacterial PNA the answer for combating multidrug resistant bacterial infections?

Anubrata Ghosal
Int. J. Biosci.10( 1), 408-410, January 2017.
Certificate: IJB 2017 [Generate Certificate]


The emergence of multidrug resistant bacterial infections is a serious problem. Treatment options are limited to patients those are infected with multidrug resistant bacteria. We are in a desperate need of new antibiotics. Antisense oligomers of PNA (Peptide Nucleic Acid) were introduced in late 90’s as antibacterial agents in an intention to create a new class of bacterial specific antibiotic. Followed by several studies have demonstrated that antibacterial PNA oligomers are effective in a verity of pathogenic bacterial strains. Development of PNA-based drugs (PNA antibiotics) will help us to combat infections of drug resistant bacterial strains.


Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science. 307(5717),  1915–20.

Bai H, You Y, Yan H, Meng J, Xue X, Hou Z, Zhou Y, Ma X, Sang G, Luo X. 2012. Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials. 33(2), 659–67.

Fritz JV, Heintz-Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P.2016. Sources and Functions of Extracellular Small RNAs in Human Circulation. Annu. Rev. Nutr. 36, 301-36.

Ghosal A. Peptide nucleic acid opens an avenue of developing novel antibacterial molecules. J. Infect. Dev. Ctries. in press.

Ghosal A. 2012.Novel antibacterial agents (antibiotics) based on RNA interference using Peptide Nucleic Acid (PNA). University of Copenhagen.

Ghosal A, Nielsen PE. 2012.Potent antibacterial antisense peptide–peptide nucleic acid conjugatesagainst Pseudomonas aeruginosa. Nucleic Acid Ther. 22(5), 323–34.

Ghosal A, Vitali A, Stach JE, Nielsen PE. 2013. Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli. ACS Chem. Biol. 8(2), 360–7.

Ghosal A, Upadhyaya BB, Fritz JV, Heintz-Buschart A, Desai MS, Yusuf D, Huang D, Baumuratov A, Wang K, Galas D, Wilmes P. 2015. The extracellular RNA complement of Escherichia coli. Microbiologyopen. 4(2),252–266.

Good L, Nielsen PE. 1998. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol. 16(4), 355–8.

Good L, Awasthi SK, Dryselius R, Larsson O, Nielsen PE. 2001. Bactericidal antisense effects ofpeptide–PNA conjugates. Nat. Biotechnol. 19(4), 360–364.

Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarz DW, Demers EG, Dolben EL, Hammond JH, Hogan DA, Stanton BA.2016. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles. PLOS Pathog. 12(6), e1005672.

Lewis K.2013. Platforms for antibiotic discovery. Nat. Rev. Drug Discov 12(5), 371–87.

Montagner G, Bezzerri V, Cabrini G, Fabbri E, Borgatti M, Lampronti I, Finotti A, Nielsen PE, Gambari R. 2017. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system. Int. J. Biol. Macromol. S0141-8130(16),30671-7

Tan XX, Actor JK, Chen Y. 2005. Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: proof of principle using mouse intraperitoneal infection. Antimicrob Agents Chemother 49(8), 3203–7.