Welcome to International Network for Natural Sciences | INNSpub

Kinetics study of drying at drying oven and microwawe oven of Hura crepitans seeds

Research Paper | November 1, 2018

| Download 11

CH Hounounou Moutombo, A Kimbonguila, L Matos, BG Elongo, M Mizere, SLH Djimi, JM Nzikou

Key Words:

Int. J. Agron. Agri. Res.13( 5), 71-78, November 2018


IJAAR 2018 [Generate Certificate]


The objective of this work is to contribute to the valorization of Hura crepitans by kinetics study of drying at drying oven and microwawe oven of Hura crepitans seeds. The seeds were dehydrated until obtaining a constant mass, respectively in a drying oven and a microwawe oven. Drying was carried out at temperatures of 50, 60 and 70°C and powers of 140, 280 and 420 W respectively with the drying oven and the microwawe oven. The results show that, the samples kiln-dried with microphone-of (140 W and 280 W) present a phase at constant pace, which is not the case for drying with the drying oven. The rise in the temperature to the drying oven from 50 to 70°C and in the power of heating to the microwaves of 140 to 420W varies the coefficient of diffusion of 7.12×10-9m2.s-1 with 8.76×10-9m2.s-1 and of 5.03×10-8m2.s-1 with 8.64×10-8m2.s-1.The energy of seed activation of Hura crepitans is about 9.53 kJ.mol-1.


Copyright © 2018
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Kinetics study of drying at drying oven and microwawe oven of Hura crepitans seeds

Adewuyi Adewale A, Gopfert T, Wolff BVS K, Rao RBN. 2012. Prasad, “Synthesis of azidohydrin from Hura crepitans seed oil: a renewable resource for oleo chemical industry and sustainable development,” ISRN Organic Chemistry, Article ID 873046, 7 p.

Aghfir A, Akkad S, Rhazi M, Kane CSE, et Kouhila M. 2008. Détermination du coefficient de diffusion et de l’énergie d’activation de la menthe lors d’un séchage conductif en régime continu. Revue des Energies Renouvelables Vol. 11, N°3 385 – 394.

Akmel DC, Assidjo EN, Kouamé P, Yao KB. 2009. Mathematical modeling of Sun Drying Kinetics of Thin Layer Cocoa (Theobroma Cacao) Beans. Journal of Applied Sciences Research 5, p. 1110–1116.

Al-Harahsheh M, Al-Muhtaseb AH, Magee TRA. 2009. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing 48, p. 524–531.

Alibas I. 2007. Microwave, air vand combined microwave air-drying parameters of pumpkin slices. Journal Food Sciences of and Technology 40, p. 1445-1451.

AOAC (Association of Official Analytical Chemists). 1990. Official methods of analysis (13th ed.) Washington, D.C: Association of Official Analytical Chemists.

Bal LM, Kar A, Satya S, Naik SN. 2010. Drying kinetics and effective diffusivity of bamboo shoot slices undergoing microwave drying. International Journal of food Science and Technology 45, 2321–2328.

Barel M. 2013. Quality of cocoa: the impact of post-harvest treatment, know-how, Publisher Quae, Paris.

Belachi. 2009. Application of solar drying for preservation of food products. http://dspace.Univ-Ouargla.dz/jspui/handle/123456789/669.

Bonnazi C, Bimbinet JJ. 2003. Drying of foodstuffs principles, Edition: © Engineering techniques, Agri-food processing F3000.

Boughali S, Bouchekima B, Nadir N, Mennouche D, Bouguettaia H, Bechki D. 2008. Expérience du séchage solaire dans le Sahara septentrional est algérien. Revue des Energies Renouvelables SMSTS’08 Alger p. 105-110.

Coffey WT, Mcgoldrick SG, Quinn KP. 1988. Inertial effects in the theory of dielectric and Kerr effect relaxation of an assembly of non-interacting polar molecules in strong alternating fields. II: The effect of higher-order terms in the distribution function. Chemical physics 125, p 99-118.

Dadali G, Demirhan E, Ozbek B. 2007. Microwave Heat Treatment of Spinach: Drying Kinetics and Effective Moisture Diffusivity. Drying Technology 25, p. 1703-1712.

Doymaz I. 2005a. Drying behaviour of green beans, Journal of Food Engineering 69, p. 161–165.

Doymaz I. 2007. Air-Drying Characteristics of Tomatoes’, Journal of Food Engineering 78(4),          p. 1291-1297.

Doymaz I, Mehmet P. 2002. The effects of dipping pretreatments on air-drying rates of the seed less grapes, Journal of Food Engineering Vol. 52, p. 413-417.

EL Hiss M. 1987. Modeling, identification and simulation of an agro-food solar dryer, PhD thesis, University of Perpignan p. 125.

Gowen AA, Abu-Ghannam N, Frias J, Oliveira. 2008. Modeling dehydratation and rehydratation of cooked soybeans subjected to combined microwave-hot-air drying. Innovative Food Science & Emerging Technologies 9, p. 129-137.

Gulcimen F, Hakan K, Aydin D. 2016. Drying of sweet basil with solar air collectors, Renewable energy 93, p. 77-86.

Henderson SM. 1974. Progress in Developing the Thin Layer Drying Equation. Transactions of the ASAE, 17(6), p. 1167-1168.

Kaymak-Ertekin. 2002. Drying and Rehydrating Kinetics of Green and Red Peppers’, Journal of Food Science, 67, pp. 168-175.

Maskan M. 2001. Drying, shrinkage and rehydration characteristics of kiwi fruits during hot air and microwave drying, Journal of Food Engineering 48(2), p. 177–182.

Messaoudi A, Fahloul D. 2015. Estimation of the mass and kinetic diffusivity of hot air drying of dates (dry variety), Inn 5 th Maghreb in seminar on drying sciences and technologies, Ouargla Algeria p. 45-62.

Midilli A, Kucuk H. 2002. Mathematical modeling of thin layer drying of pistachio by using solar energy, Energy conversion and Management 44(7), p. 1111-1122.

Midilli A, Kucuk H, Yapar ZA. 2003b. New model for single-layer drying. Drying Technology 20(7), p. 1503-1513.

Mujumdar AS. 2006. Handbook of industrial drying. CRC Press, Florida, United States 1308p.

Nogbou ALI, Akmel Djedjro C, Brou Kouakou, Assidjo Nogbou E. 2015. Modeling of the drying kinetics of cocoa by semi empirical models and by a network of artificial recurrent neurone : case of micro-onde drying by intermittence. European Scientific Journal 11, p1857 – 788.

Ouoba KH, Desmorieux H, Zougmore F et Naon B. 2010. Caractérisation du séchage convectif du gombo, influence de la découpe et de ses constituants. Afrique Sciences 06, p37–48.

Panchariya PC, Popovic D, Sharma AL. 2002. ‘Thin-Layer Modelling of Black Tea Drying Process’, Journal of Food Engineering 52(4), p. 349–357.

Park KJZ, Vohnikova, Brod FPR. 2002. Evaluation of Drying Parameters and Desorption Isotherms of Garden Mint Leaves (Mentha Crispa. L). Journal of Food Engineering 51, pp. 193 – 199.

Princen LH, Rothfus JA. 1984. Development of new crops for industrial raw materials, Journal of the American Oil Chemists’ Society vol. 61(2), p. 281–289.

Rizvi SSH. 2005. Thermodynamic properties of foods in dehydration. In Engineering Properties of Foods (ed. MA, Rao, SSH, Rizvi & AK Datta), 239-326. Florida, United States: CRC Press.

Sacilik K. 2007. The thinlayermodelling of tomatodryingprocess, Agriculturae Conspectus Scientificus Vol. 72(4), p. 343-349.

Silou T, Goma Maniongui J, Boungou P, Ouamba JM. 1991. Etude du séchage de la pulpe de safou; résultats préliminaires. Tropicultura 9, p61-68.

Simal S, Femenia A, Garau MC, Rosselló C. 2005. Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering 66(3), 323-328.

Van Brakel J. 1980. Mass transfer in convection drying. In: Advances in Drying, Hemisphere Publishing Corporation.

Zielinska M, Markowski M. 2010. Air drying characteristics and moisture diffusivity of carrots. Chemical Engineering and Processing: Process Intensification 49(2), p. 212-221.