Leaf identification of sesame varieties using artificial neural networks (MLP and Neuro-Fuzzy)

Paper Details

Research Paper 01/05/2013
Views (855)
current_issue_feature_image
publication_file

Leaf identification of sesame varieties using artificial neural networks (MLP and Neuro-Fuzzy)

Alireza Pazoki, Zohreh Pazoki, Farzad Paknejad
Int. J. Biosci. 3(5), 108-116, May 2013.
Copyright Statement: Copyright 2013; The Author(s).
License: CC BY-NC 4.0

Abstract

This study focused on the identification of sesame leaf varieties using two artificial neural networks. Artificial neural network (ANN) is one of the efficient ways for solving complex problems such as identification tasks. This research was done in Islamic Azad University, Shahr-e-Rey Branch, during 2011 on 7 main sesame leaf varieties (Darab14, Dashtestan, Karaj1, Naz, Oltan, Varamin and Yekta) were grown in Varamin region of Iran. Different types of features (morphological, color, shape and chlorophyll) were extracted from color images using various methods. A multi layer perceptron (MLP) and Neuro-Fuzzy neural network were applied to classify leaf varieties. The MLP topological structure consisted of 42 input neurons, 7 output neurons and two hidden layers. The applied Neuro-fuzzy classifier had input and output layers as MLP and 60 rules instead of hidden layers. The identification accuracies computed 88.43% and 87.34% by MLP and Neuro-Fuzzy classifiers consequently, so the MLP classifier had better performance for classifying sesame leaf varieties.

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 1–15. Doi: http://dx.doi.org/ 10.1104/p.24.1.1

Chen X, Xun Y, Li W, Zhang, J. 2010. Combining discriminant analysis and neural networks for corn variety identification. Computers and Electronics in Agriculture 71S, S48-S53.

Du JX, Wang, XF, Zhang, GJ. 2007. Leaf shape based plant species recognition. Applied Mathematics and Computation, vol. 185.

Fu H, Chi Z. 2006. Combined thresholding and neural network approach for vein pattern extraction from leaf images,” IEE Proceedings-Vision, Image and Signal Processing, vol. 153. Doi: http://dx.doi.org/10.1049/ip-vis:20060061

Fu H, Chi Z. 2003. A two-stage approach for leaf vein extraction,” in Proceedings of IEEE International Conference on Neural Networks and Signal Processing, Nanjing, China.

Gu X, Du JX, Wang XF. 2005. Leaf recognition based on the combination of wavelet transform and gaussian interpolation, in Proceedings of International Conference on Intelligent Computing 2005, ser. LNCS 3644, Springer.

Heymans BC, Onema JP, Kuti JO. 1991. A neural network for opuntia leaf-form recognition,” in Proceedings of IEEE International Joint Conference on Neural Networks. Doi: http://dx.doi.org/10.1109/IJCNN.1991.170700.

Hong SM, Simpson, B, Baranoski, GVG. 2005. Interactive venationbased leaf shape modeling, Computer Animation and Virtual Worlds, vol. 16. Doi: http://dx.doi.org/10.1002/cav.88

Image Processing Toolbox for O-Matrix. 2007. Reference manual, Version 1.0, Anona Labs Ltd, www.anonalabs.com , 5 Sep 2010.

Kantardzic  M.  2003.  Data  Mining  Concepts, Models, Methods, and Algorithms. IEEE, Piscataway, NJ, USA.

Li Y, Zhu Q, Cao Y, Wang C. 2005. A leaf vein extraction method based on snakes technique,” in Proceedings of IEEE International Conference on Neural Networks and Brain.

Nam Y, Hwang E, Byeon K. 2005. Elis: An efficient leaf image retrieval system, in Proceedings of International Conference on Advances in Pattern Recognition 2005, ser. LNCS 3687, Springer.

Ohta Y. 1985. Knowledge-Based Interpretation of Outdoor Natural Color Scenes. Pitman Publishing Inc, Marshfield, MA.

Paliwal J, Visen NS, Jayas DS. 2001. Evaluation of Neural Network Architectures for Cereal Grain Classication using Morphological Features. Journal of agricultural engineering research 79(4), 361-370.

Pazoki AR, Pazoki Z. 2011. Classification system for rain fed wheat grain cultivars using artificial neural network. African Journal of Biotechnology, 10(41), 8031-8038. Doi: http://dx.doi.org/10.5897/AJB11.488

Qi H, Yang JG. 2003. Sawtooth feature extraction of leaf edge based on support vector machine, in Proceedings of the Second International Conference on Machine Learning and Cybernetics.

Rumelhart DE, McClell JL, Williams RJ. 1986. Parallel Recognition in Modern Computers, in Processing: Explorations in the Microstructure of Cognition, vol. 1. MIT Press, Foundations, Cambridge, MA. For an edited book.

Rutkowaska D, Starczewski A. 2004. A Multi-NF approach with a hybrid learning algorithm for classification. Machine Intelligence. World Scientific Publishing Co. Pte. Ltd. For an edited book.

Symons SJ, Fulcher RG. 1988a. Determination of wheat kernel morphological variation by digital image  analysis,  I  Variation  in  eastern  Canadian milling quality wheats. Journal of Cereal Science, 8, 211–218. http://dx.doi.org/10.1016/S0733-5210(88)80032-8

Umbaugh SE. 2005. Computer Imaging: Digital Image Analysis and Processing. Taylor & Francis, New York.

Wang LX. 1997. Design of uzzy systems using gradient descent training. A course in fuzzy systems & control. Prentice Hall international.168- 179. Inc Press.

Wu S, Bao F, Xu E, Wang Y, Chang Y, Xiang Q. 2007. A leaf recognition algorithm for plant classification using probabilistic neural network, in Proceedings of 2007 IEEE International Symposium on Signal Processing and Information Technology, Giza.

Zhao-Yan L, Fang C, Yi-bin Y, Xiu-qin R. 2005. Identification of rice seed varieties using neural network. Journal of Zhejiang University Science 6B(11), 1095-1100.

Related Articles

Hepatoprotective and antinociceptive effects of terpinolene in streptozotocin-induced diabetic peripheral neuropathic rats

Ravishankar Sarumathi, Muthukumaran Preethi, Chandrasekaran Sankaranarayanan*, Int. J. Biosci. 27(6), 156-166, December 2025.

Agromorphological characterization of six promising bambara groundnut [Vigna subterranea (L.) Verdc.] genotypes under selection in Burkina Faso

Adjima Ouoba*, Ali Lardia Bougma, Dominique Nikiéma, Mahamadi Hamed Ouédraogo, Nerbéwendé Sawadogo, Mahama Ouédraogo, Int. J. Biosci. 27(6), 145-155, December 2025.

Integrated in silico and in vitro analyses reveal E-cadherin crosstalk and TF: FVIIa complex-mediated trophoblast motility via MEK/JNK activation

Kirthika Manoharan, Jagadish Krishnan, Vijaya Anand Arumugam, Shenbagam Madhavan*, Int. J. Biosci. 27(6), 136-144, December 2025.

Effect of flooding depth and harvest intensity on soil moisture dynamics and production of baobab (Adansonia digitata) seedlings

Sissou Zakari, Pierre G. Tovihoudji, Mouiz W. I. A. Yessoufou, Sékaro Amamath Boukari, Vital Afouda, Imorou F. Ouorou Barrè, Int. J. Biosci. 27(6), 127-135, December 2025.

Local food processing and associated hygienic quality in greater Lomé, Togo: Traditional cooked corn-based dough akpan wrapped in M. cuspidata, M. mannii and M. purpurea species leaves

Mamy Eklou, Komlan Edjèdu Sodjinou, Kodjo Djidjolé Etse, Awidèma Adjolo, Benziwa Nathalie Johnson, Bayi Reine Dossou, Yaovi Ameyapoh, Raoufou Radji, Akossiwoa M-L Quashie, Int. J. Biosci. 27(6), 114-126, December 2025.

Improving the microbiological quality of spices and spice blends using treatments accessible to SMEs/SMIs

Pingdwindé Marie Judith Samadoulougou-Kafando, Korotimi Traoré, Crépin Ibingou Dibala, Aboubacar Sidiki Dao, Josias Nikiema, Idrissa Taram, Adama Pare, Inoussa Salambéré, Donatien Kaboré, Charles Parkouda, Int. J. Biosci. 27(6), 102-113, December 2025.

Twin-row planting practice in village sugarcane (Saccharum officinarum L.) plantations during first ratoon under rainfed conditions in northern Côte d’Ivoire

Allé Yamoussou Joseph, Sawadogo Fatima, Traoré Mohamed Sahabane, Fondio Lassina, Int. J. Biosci. 27(6), 91-101, December 2025.

Prevalence of dengue infection in Delta State, Nigeria

P. A. Agbure, O. P. G. Nmorsi, A. O. Egwunyenga, Int. J. Biosci. 27(6), 82-90, December 2025.