Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | April 1, 2015

VIEWS 2
| Download 3

Lipid peroxidation, oxidative stress and respiratory metabolism alteration in the freshwater ciliate Paramecium tetraurelia exposed to cypermethrin, a pyrethroid insecticide

Rima Amamra, Mohamed Réda Djebar, Ouissem Moumeni, Zoubi Azzouz, Ibtissem Zeriri, Amira Atailia, Sana Benosmane, Houria Berrebbah

Key Words:


J. Bio. Env. Sci.6(4), 115-123, April 2015

Certification:

JBES 2015 [Generate Certificate]

Abstract

Oxidative damage by increased production of reactive oxygen species have been involved in the toxicity of several pesticides. Thus, the aim of this study was to investigate the effect of cypermethrin, a widely used type II pyrethroid, on the oxidative stress biomarkers and the respiratory metabolism of Paramecium tetraurelia. Different concentrations of the insecticide (0.05, 0.5, 1 and 2 µg/l) were incubated with Paramecium cells. The 96h (IC50) was determined. Variations in lipid content and oxidative stress biomarkers such as: Malondialdehyde (MDA), Glutathione (GSH), Glutathione peroxidase (GPx) and Lactate dehydrogenase (LDH) were carried. Moreover, respiratory metabolism was followed up. The estimated 96h (IC50) value for Paramecium tetraurelia exposed to cypermethrin in our study was 1.26 µg/l. Significant decrease was observed in total lipids content. Cypermethrin exposure has led to a lipid peroxidation supported by a significant increase in (MDA) level which might be associated with decreased level of (GSH). (GPx) and (LDH) activities, antioxidant enzymes, were significantly induced. The response was concentration dependent especially for the highest concentration. A strong disturbance in respiratory metabolism was observed. In summary, under the current experimental conditions, lipid peroxidation, oxidative stress and alteration in respiratory metabolism are involved in the toxicity of cypermethrin to the ciliate Paramecium tetraurelia. Likewise, due to its susceptibility, Paramecium could be used as an ideal model for studying toxicity of environmental contaminants.

VIEWS 2

Copyright © 2015
By Authors and International Network for
Natural Sciences (INNSPUB)
http://innspub.net
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Lipid peroxidation, oxidative stress and respiratory metabolism alteration in the freshwater ciliate Paramecium tetraurelia exposed to cypermethrin, a pyrethroid insecticide

Abele D, Vazquez Medina J P, Zenteno-Savin T. 2011. Introduction to oxidative stress in aquatic ecosystem. In: Abele, D., Vazquez Medina, J.P., Zenteno-Savin (Eds.) oxidative stress in aquatic ecosystem. Wiley-Blackwell; p.548.

Azzouz Z, Berrebbah H, Djebar M R. 2011. Optimazation of Paramecium tetraurelia growth kinetics and its sensitivity to combined effects of azoxystrobin and cyproconazole. African Journal of Microbiological Research 5(20), 3243-3250.

Azzouz Z. 2012. Etude  des  effets  toxiques  d’un fongicide (AmistarXtra) et d’un herbicide (Glyphosate) sur la biologie et le comportement de Paramecium tetraurelia. PhD thesis, Badji Mokhtar Univesity, Annaba, Algeria.

Benbouzid H, Berrebbah H, Berredjem M, Djebar MR. 2012. Toxic effects of phophoramidate on Paramecium sp. With special emphasis on respiratory metabolism, growth and generation time. Toxicology and Environmental Chemistry 94 (3), 557-565.

Carriquiriborde P, Diaz J, Mugni H, Bonetto C, Ronco E A. 2007. Impact of cypermethrin on stream fish populations under field use in biotech-soybean production. Chemosphere 68, 613-621.

Dagnelie P. 1999. Statistiques théoriques et appliquées. Tome 2 : références statistiques à une et à deux dimensions. Bruxelles. UNIV De BOECK et LARCIER, 659 p.

Diamantino T C, Almeida E, Soares A M V M, Guilhernmio L. 2001. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. Chemosphere. 45,553-560.

Djebar M R, Djebar H. 2000. Bioénergétique, les mitochondries végétales. Synthèse , Publication de l’univesité d’Annaba.

Draper H H, Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methodes in Enzymology 186, 241-431.

Flohe L and Gunzel W A. 1984. Assays of Glutathione peroxidase. Methods in Enzymology 105, 114-121.

Goldsworthy G J, Mordue W, Guthkelch J. 1972.  Studies on insect adipokinetic hormones. Gen. Comp. Endocrinol 18 (3), 545.

Hill, B.R. and Levi, C. 1954. Cancer Research 14, 513.

Huynh Thi T, Silvester F, De Meulder B, Thome JP, Thanh Phrong N, Kester mont P. 2012. Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemosphere 86, 83-91.

Itziou A, Kaloyanni M, Dimitriadis V K. 2011. Effect of organic contaminants in reactive oxygen species, protein carbonylation and DNA dommage on digestive gland and haemolymph of land snails. Chemosphere 07, 043

Jin Y X, Zhag X X, Shu LJ, Chen LF, Sun LW, Ojan HF, Liu WP, Fu ZW. 2010a. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78, 846-852.

Laabs V, Laabs W, A Amelung, Pinto M, Wantzen C, Da Sitva W. Zech.2002. Pesticides in surface, sediment and rainfall of the northeastern Pantanal Basin, Brazil.Journal of Environmental Quality 31, 1636-1648.

Madoni P, Guiseppa Roeo M. 2006. Acute toxicity of heavy metals towards freshwater ciliated protests. Environmental Pollution 41, 1-7.

Mei-Fang Shen, Anupama Kurnar, Shu-Yan Ding, Sonia Groke. 2011. Comparative study on the toxicity of pyrethroids, α-cypermethrin and deltamethrin to Cerriodaphnia dubia. Ecotoxicology and Environmental Safty. doi: 10.1016/j. ecoenv. 2011.07.018

Mohamed M, Abdel-Daim, Nevien K H, Abdelkhalek ahmed M Hassan. 2015. Antagonistic activity of dietary allicin against deltamethrin-induced oxidative damage in freshwater Nile tilapia, Oreochromis niloticus. Ecotoxicology and Environmental Safty 111, 146-152. http://dx.doi.org/10.1016/j.ecoenv.2014.10.019

Mouneyrac C, Leung P T Y, Leung K M Y. 2011. Costs of tolerance. In: Amiard-T riquet C, Rainbow P S, Romeo M. (Eds). Tolerance to Environmental Contaminants. Environmental and Ecological Risk Assessment Series. CRC Press, Boca Raton. p. 446

Nzengue Y. 2008. Comparaison des mécanismes de toxicité redox du Cadmium, du cuivre et du zinc : place des métallo thionines et de P53 .PhD thesis, JOSEPH FOURIER – GRENOBLE 1 University, Grenoble, France .

Oliveira C, Almeida J, Guilhermino L, Amadeu M.V.M. Soares, Gravato C. 2012. Acute effects of Deltamethrin on swimming velocity and biomarkers of the common prawn Palaemon serratus. Aquatic Toxicology 124-125, 209-216. http://dx.doi.org/10.1016/j.aquatox.2012.08.010

Paital B, Chainly G B N. 2012. Effects of salinity on O2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comparative Biochemistry and physiology Part C155, 228-237.

Sbartai I. 2011. Toxicity d’un Hydrazine carboxylate (Bifenazate) et d’un Oxadiazine (Indoxacarbe) observée chez un modèle cellulaire d’eau douce : Paramecium sp. PhD thesis, Badji Mokhtar Univesity, Annaba, Algeria.

Sepici-Dinçel A, Benli A.C.K, Selvi M, Sarikaya R, Sahin D, Ayhan O, Erkoç. 2009. Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: Biochemical, hematological, histopathological alterations. Ecotoxicoly and Environmental Safety 72, 1433-1439.

Steven B. 2011. Binary mixture of pyrethroids produce differential effects on Ca++influx and glutamate release at isolated presynaptic nerve terminals from rat brain. Pesticide Biochemistry and Physiology 99, 131-139.

Tappel, A.L. 1973. Lipid peroxidation damage to cell component. Fed Proc 32, 1870-1874.

Van de Oost R, Beyer J, Vermeulen NPE. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment. A review. Environmental Toxicology and Pharmacology 13, 57-149.

Wechbeker G, Cory. 1988. Ribonucleotide reductase activity and growth of glutathione depleted mouse leukemia L1210 cells in vitro. Cancer letters 40, 257-264.

Wenquing T, Bin L, Lili N, Chao X, Chunmian L, Wenquing L. 2014. Dynamics of uptake and elimination of pyrethroid insecticides in zebrafish (Danio rerio) eleutheroembryos. Ecotoxicology and Environmental Safety 107, 186-191.

Xiangguo Shi, Aihua Gu, Guixiang Ji, Yuan Li, Jing Di, Jing Jin, Fan Hu, Yan Long, Yan Long, Yankai Xia, Chuncheng Lu, Ling Song, Shoulin Wang, Xinru. 2011.Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85, 1010-1016.

Yang Y, Ma H, Zhou J, Lin J, lui W. 2014. Joint toxicity of permethrin and cypermethrin at sublethal concentrations of the embryo-larval Zebrafish. Chemosphere 96, 146-154.

SUBMIT MANUSCRIPT

Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background