Locating flood spreading suitable sites for groundwater recharging through multi criteria modeling in GIS (case study: Omidieh-Khuzestan)

Paper Details

Research Paper 01/11/2014
Views (490)
current_issue_feature_image
publication_file

Locating flood spreading suitable sites for groundwater recharging through multi criteria modeling in GIS (case study: Omidieh-Khuzestan)

Mina Arianpour, Ali Akbar Jamali
J. Biodiv. & Environ. Sci. 5(5), 119-127, November 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Use of geographic Information systems (GIS) to determine the suitable potential sites for flood spreading is not possible without using decision making systems. The aim of determining flood spreading suitable sites is enhancing ground-water in arid and semi-arid areas through spatial multi-criteria evaluation )SMCE( in GIS for combating with drought and dryness. Thus the area of Omidieh with 1262.55 Km2 was selected. In this study, economic factors such as, proximity to the road, the village and streams were considered. The natural limiting factors of slope, land use, geology, NDVI1 and soil texture were also involved so that in the spatial multi-criteria evaluation the factors ، Boolean and Fuzzy were standardized using related equations. Weight of factors was determined by the ranking method. In the next step, integration layers were performed by designing criteria tree in the ILWIS2 software environment which was resulted in the composite index map with fuzzy values (0 till 1). Consequently, suitable sites for flood spreading with values closer to1, had an area equivalent to 139.8425 Km2 and three priorities covered 11.7% of the area. This region has appropriate overlap with the implemented region of the flood spreading scheme; on the other hand, obtained evidence and reasons indicate suitability by selecting the SMCE model for this project.

Alesheikh AA, Soltani MJ, Nouri N, Khalilzadeh M. 2008. Land assessment for flood spreading site selection using geospatial information system. International Journal of Environmental Science and Technology, 5, 455-462.

Antonella Z, Sharifi AM, Andrea GF. 2008. Application of Spatial Multi-Criteria Analysis to Site Selection for A Local Park: A Case study in The Birgamo Province, Italy. Journal of Operational Research, 158, 1-18.

Asgharipour dasht bozorg N, Servati M,Azimi F, Zaheri Aabdevand Z. 2011. Locating suitable areas of flood spread for artificial recharge of aquifers in North andimeshk, quarterly geographical territory – scientific research, Year VIII, No. 32, pp. 112-99.

Balachandar D, Alaguraja P, Sundaraj P, Rutharvelmurthy K, Kumaraswamy K. 2010. Application of Remote Sensing and GIS for Artificial Recharge Zone in Sivaganga District, Tamilnadu, India. Inter national journal of geomatics and geosciences,value1, No1.

Dadrasi S, Khosroshahi M. 2008. Identification of flood spread prone areas by application of conceptual models (strategy to curb desertification). Iranian Journal of pasture and Desert Research of Iran. 15, 241 to 227

Faraji sabokbar HA, Hassanpour S, Malekian A, Alavi Panah SK. 2012. Investigation and comparison of performance of GCA and FAHP method to locate flood spreading in GIS enviornment (Case Study: Grbaygan catchment), Research in Physical Geography, Year 45, No. 2, pp. 76-55.

Ghayoumian J, Mohseni Saravi M, Feiznia S, Nouri B, Malekian A. 2006. Application of GIS techniques to determine areas most sui for artificial groudwater recharge in a coastal aquifer in south, Journal of Asian Earth Sciences 30, 364-374.

Guler Yalcin MSc. 2008. Assist. Prof. Dr. Zuhal Akyurek, Multiple Ciriteri Analysis for Flood Vulnerable Areas.

Hassanpour S, Shabani A, Rahimi S.2011. Locating suitable areas for flood spreading of Fasa plain using GIS, Geomatics proceeding.

Hasanali FS, Hassan pour S, Alavi Panah SK, Elias pour S.2011. Locating suitable areas for flood spreading, using hierarchy process (AHP) in GIS: A Case Study of Garbaigan watershed, Fasa plain, Iran, Shiraz , Journal of Geography, Year IV, No. 14. Pp. 25-13.

Jamali A.A, Abdolkhani A.2009. Preparedness Against Landslide Disasters with Mapping of Landslide Potential by GIS SMCE(Yazd-Iran), International Journal of Geoinformatics, Vol5, No. 4, pp 25-31.

Jamali AA, ZareKia S. 2010. Identifying and prioritizeing suitable flood spreading zone to feed the aqueduct, wells and springs in the Dry Areas (Case Study: Yazd valley watershed). Iranian Journal of pasture and Desert Research. Volume 17, Issue 1, pp. 114-106.

Kheirkhah Zarkesh M. 2005. Decision support system for floodwater spreading site selection in Iran. Ph.D. Thesis, Wagening University, the Netherlands, 259p.

Mahshid S, Jafari M, Azarnivand H, Farokhzadeh B. 2012. Determining suitable areas for flood spreading project using a hierarchical process and geographic information system (Case Study: Mikhuran basin o Kermanshah), Watershed Research, No. 97.

Marofi S, Mahmoodi M, Soleymani S, Jafari B. 2012. Assessment of flood spreading site using index of overlay maps, Boolean and fuzzy logic operation in GIS media (Case study: Poshtekoh basin).

Comprehensive Plan of desertification Omidieh. 2003. Consulting Engineers Arian Green Saman, Department of Natural Resources and Watershed Khuzestan.

Murugiah M, Venkatraman P. 2013. Role of Remote Sensing and GIS in artificial recharge of the ground water aquifer in Ottapidaram taluk, Tuticorin district, South India,International Journal of geomatics and geosciences, Volume 3, No 3.

Peter HS, Max Billib R, Ahmed A, Hassan M. AS, Mohamed Nour E.D. 2011. application of the overlay weighted model and Boolean logic to determine the best locations for artificial recharge of ground water, Journal of Urban and Environmental, Engineering, v.5, n.2, p.57-66.

Sharifi AM, Retsios V. 2006. Site selection for waste disposal through Spatial Multiple Criteria Decision Analysis. Warsaw, Poland.

Related Articles

Agroforestry in woody-encroached Sub-Saharan savannas: Transforming ecological challenges into sustainable opportunities

Yao Anicet Gervais Kouamé, Pabo Quévin Oula, Kouamé Fulgence Koffi, Ollo Sib, Adama Bakayoko, Karidia Traoré, J. Biodiv. & Environ. Sci. 27(3), 10-22, September 2025.

Extreme rainfall variability and trends in the district of Ouedeme, municipality of Glazoue (Benin)

Koumassi Dègla Hervé, J. Biodiv. & Environ. Sci. 27(3), 1-9, September 2025.

Heterosis breeding, general and specific combining ability and stability studies in pearl millet: Current trends

Ram Avtar, Krishan Pal, Kavita Rani, Rohit Kumar Tiwari, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 117-124, August 2025.

Combining ability, heterosis and stability for yield and fibre quality traits in cotton: Breeding approaches and future prospects

Rohit Kumar Tiwari, Krishan Pal, R. P. Saharan, Ram Avtar, Mahendra Kumar Yadav, J. Biodiv. & Environ. Sci. 27(2), 109-116, August 2025.

Bridging the COPD awareness gap in marginalized populations: Findings from a multicentre study in Khalilabad, Sant Kabir Nagar, Uttar Pradesh, India

Anupam Pati Tripathi, Jigyasa Pandey, Sakshi Singh, Smita Pathak, Dinesh Chaudhary, Alfiya Mashii, Farheen Fatima, J. Biodiv. & Environ. Sci. 27(2), 97-108, August 2025.

Antioxidant and anti-inflammatory activity of Pleurotus citrinopileatus Singer and Pleurotus sajor-caju (Fr.) Singer

P. Maheswari, P. Madhanraj, V. Ambikapathy, P. Prakash, A. Panneerselvam, J. Biodiv. & Environ. Sci. 27(2), 90-96, August 2025.

Mangrove abundance, diversity, and productivity in effluent-rich estuarine portion of Butuanon River, Mandaue City, Cebu

John Michael B. Genterolizo, Miguelito A. Ruelan, Laarlyn N. Abalos, Kathleen Kay M. Buendia, J. Biodiv. & Environ. Sci. 27(2), 77-89, August 2025.

Cytogenetic and pathological investigations in maize × teosinte hybrids: Chromosome behaviour, spore identification, and inheritance of maydis leaf blight resistance

Krishan Pal, Ravi Kishan Soni, Devraj, Rohit Kumar Tiwari, Ram Avtar, J. Biodiv. & Environ. Sci. 27(2), 70-76, August 2025.