Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | March 10, 2023

| Download 10

Microbiological assessment of air quality of selected locations within Veritas University, Abuja, Nigeria

TO. Ozoude, EE. Francis, EU. Amachree, JC. Anyanwu

Key Words:

J. Bio. Env. Sci.22( 3), 22-27, March 2023


JBES 2023 [Generate Certificate]


The study investigated the microbiological quality of indoor and outdoor air of certain locations – the chapel, basement, classroom, hostel, as well as the old and new microbiology laboratories in Veritas University, Abuja. The settle plate technique using open Petri dishes containing different culture media was employed to collect samples daily for 5 weeks at 7 days intervals. Standard microbiological methods were employed for the identification of bacterial and fungal isolates. The bacterial counts ranged from 1.90×106 to 5.3×106 and 2.90 x 106 to 6.20 x 106 for indoor and outdoor air while the fungal counts ranged from 2.30 x106 to 3.70 x 106 and 2.10 x 106 to 4.40 x 106 also for indoor and outdoor air respectively. The bacterial isolates were identified to include Bacillus species and Staphylococcus aureus with percentage occurrence of 44.0% and 56.0% respectively. The results obtained also showed the occurrence of three major fungal species namely Aspergillus sp (60.0%), Rhodotolura sp (5.0%), and Rhizopus sp (35.00%). The bacterial isolate, Staphylococcus aureus (56.0%) was shown to be the most predominant airborne bacteria while Aspergillus sp (60.0%) was the most frequently isolated fungal species. The 95% confidence level statistical analysis showed a significant difference between the indoor and outdoor air microbial load of the selected locations. Data generated underline the usefulness of monitoring the air quality of the selected locations because the contamination of indoor and outdoor habitats can cause health problems and even an increase in human mortality.


Copyright © 2023
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Microbiological assessment of air quality of selected locations within Veritas University, Abuja, Nigeria

Adeleye AO, Amoo AO, Omokhudu GI. 2018. Indoor air quality assessment of Federal University Dutse Library North West. Journal. of Applied Science Environmental Management 22(10), 1621- 1624. DOI10.4314/jasem.v22i10.16

Agwaranze DI, Ogod AC, Ezeonu CS. 2020. Microbiological Assessment of Indoor and Outdoor Air Quality in a General Hospital in North-East, Nigeria. Research Journal of Microbiology 15, 9-14. DOI: 10.3923/jm.2020.9.14

Amato P. 2012. “Clouds Provide Atmospheric Oases for Microbes.” Microbe Magazine 4547.

Andualem Z, Gizaw Z, Bogale L, Dagne H. 2019. Indoor Bacteria Load and its Correlation to physical Indoor Air quality parameters in public primary schools. Multidisciplinary Respiratory medicine 14(2), 1- 7. DOI: 10.1186/s40248-018-0167-y

Cabral J. 2010. Can we use indoor fungi as bioindicators of indoor air quality? Historical Perspectives and Open Questions. Science Total Environment 408, 4285-4295. DOI: 10.1016/ j.scitotenv.2010.07.005

Ekhaise FO, Isitor EE, Idehen O, Emoghene EA. 2010. Airborne microflora in the atmosphere of a hospital environment of the University of Benin Teaching Hospital (UBTH), Benin City, Nigeria. World Journal of Agricultural Science 6, 166-170.

Ekhaise FO, Ogboghodo BI. 2011. Microbiological indoor and outdoor air quality of two major hospitals in Benin City, Nigeria. Sierra Leone Journal of Biomedical Research 3, 169-174.

Emuren K, Ordinioha B. 2016. Microbiological assessment of indoor air quality at different sites of a tertiary hospital in South-South Nigeria. Port Harcourt Medical Journal 10, 79-84. DOI: 10.4103/0795-3038.189459

Ewa B, Izabela B, Barbera K, Jozef SP. 2018. Microbiological indoor air quality in an office building in Gliwice, Poland: Analysis of the case study. Air Quality, Atmosphere Health 11, 729- 740. DOI: 10.1007/s11869-018-0579-z

Jaffal AA, Nsanze H, Bener A, Ameen AS, Banat IM, El Mogheth AA. 1997. Hospital airborne microbial pollution in a desert country. Environment International 23, 167-172. DOI: 10.1016/S0160-4120(97)00003-2

Kalwasinska A, Burkowska A, Wilk I. 2012. Microbial air contamination in the indoor environment of the university library. Annals of Agricultural and Environmental Medicine 19(1), 25- 29.

McMahon S, Hope J, Thrasher J, Rea W, Vinitsky A, Gray M. 2012. Common Toxins in Our Homes, Schools, and Workplaces. Global Indoor Health Network, Inc. Henderson, NV89077-7308.

Okereke HC, Kanu IJ. 2004. Identification and Characterization of Microorganisms. In: Laboratory Guide for Microbiology, Onyeagba, A. (Ed.)., Crystal Publishers, Okigwe pp. 95-110.

Usmana S, Edet N, Uko M, Agbo B, Bassey M. 2018. Microbiological Quality of Indoor and Outdoor Air within Biological Sciences Laboratories in Akwa Ibom State University, Nigeria.  Frontiers in Environmental Microbiology 4(6), 124-132. DOI: 10.11648/j.fem.20180406.11.

World Health Organization (WHO). 2010. WHO Guidelines for Indoor Air Quality: Dampness and Mould. Copenhagen, Denmark: World Health Organization. Retrieved, 25/03/2017.