Microorganism’s application strategy for bio-phytoremediation of heavy metal: A review

Paper Details

Research Paper 01/09/2014
Views (145) Download (4)
current_issue_feature_image
publication_file

Microorganism’s application strategy for bio-phytoremediation of heavy metal: A review

Ebrahim Shirmohammadi, Mojtaba Khaje, Mohammadreza Shirdali, Ghasem Hosein Talaei, Hassan Shahgholi
J. Bio. Env. Sci.5( 3), 289-298, September 2014.
Certificate: JBES 2014 [Generate Certificate]

Abstract

Phytoremediation is a group of technologies that use plants to reduce, remove, de- grade, or immobilize environmental toxins, primarily those of anthropogenic origin, with the aim of restoring area sites to a condition useable for private or public applications. Phytoremediation efforts have largely focused on the use of plants to accelerate degradation of organic contaminants, usually in concert with root rhizosphere microorganisms, or remove hazardous heavy metals from soils or water. Phytoremediation of contaminated sites is a relatively inexpensive and aesthetically pleasing to the public compared to alternate remediation strategies involving excavation/removal or chemical in situ stabilization/conversion. Their potential role in phytoremediation of heavy metal (HM) contaminated soils and water is becoming evident although there is need to completely understand the ecological complexities of the plant-microbe-soil interactions and their better exploitation as consortia in remediation strategies employed for contaminated soils. The use of metal-accumulating plants to clean soil and water contaminated with toxic metals is the most rapidly developing component of this environmentally friendly and cost-effective technology. The recent discovery that certain chelating agents greatly facilitate metal uptake by soil-grown plants can make this technology a commercial reality in the near future.

VIEWS 1

Allen MF. 1991. The Ecology of Mycorrhiza. Cambridge Uni. Press, Cambridge, 184 P.

Allen MF. 1992. Mycorrhizal Functioning: An Integrative Plant-Fungal Process. Chapman & Hall Inc., Routledge, NY, 534 P.

Azcon-Aguilar C, Jaizme-Vega MC, Calvet C. 2002. The Contribution of Arbuscular Mycorrhizal Fungi to the Control of Soil-borne Plant Pathogens. In: Gianinazzi, S., Schuepp, H. (Eds.), Mycorrhizal Technology: from Genes to Bioproducts―Achievements and Hurdles in Arbuscular Mycorrhiza Research. Birkhauser, Basel, 187-198 P.

Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.

Barber DA, Lee RB. 1974. The effect of micro-organisms on the absorption of manganese by plants. New Phytologist 73, 97–106.

Barea JM. 2000. Rhizosphere and Mycorrhizae of Field Crops. In: Toutant, P., Balazs, E., Galante, E.,

Lynch JM, Shepers JS, Werner D, Werry PA. (Eds.), Biological Resource Management, Connecting Science and Policy (OECD). INRA and Springer, Berlin, Heidelberg, New York.

Barea JM, Gryndler M, Lemananceau P, Schuepp H, Azcon R. 2002. The Rhizosphere of Mycorrhizal Plants. In: Gianinazzi, S., Schuepp, H., Barea, J.M., Haselwandter, K. (Eds.), Mycorrhizal Technology in Agriculture: from Genes to Bioproducts. Birkhauser, Basel.

Behl RK, Sharma H, Kumar V, Narula N. 2003. Interactions among mycorrhiza, Azobacter chroococcum and root characteristics of wheat varieties. J. Agron. & Crop Khan / J Zhejiang Univ Science 189(3), 151-155. http://dx.doi.org/10.1046/j.1439-037X.2003.00026.x

Bethlenfalvay GJ, Linderman, RG. 1992. Mycorrhizae in Sustainable Agriculture. The American Phytopathological Society, Special Publication No. 54, St Paul, Minnesota, USA, 124 P.

Briat JF, Fobis-Loisy I, Grignon, N, Lobreaux S, Pasca,l N, Savino G, Thoiron S, Von Wiren N, Van Wuytswinkel O. 1995. Cellular and molecular aspects of iron metabolism in plants. Biology Cell. 84, 69–81.

Chaudhry TM, Khan AG. 2002. Role of Symbiotic Organisms in Sustainable Plant Growth on Heavy Metal Contaminated Industrial Sites. In: Rajak, R.C. (Ed.), Biotechnology of Microbes and Sustainable Utilization. Scientific Publishers, Jodhpur, India, 270-279 P.

Chaudhry TM, Khan AG. 2003. Plants Growing on Abandoned Mine Site and Their Root Symbionts. In: Gorban, G.R., Lepp, N. (Eds.), Proceedings 7th International Conference on the Biogeochemistry of Trace Elements. Swedish University of Agricultural Sciences, Uppsala, Sweden, 134-135 P.

Clark RB, Zeto SK. 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition. 23, 867-902.

Clarkson DT, Luttge U. 1989. Mineral nutrition: divalent cations, transport and compartmentalization. Prog Botany 51, 93–112.

Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ. 1991. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil, 130, 179–198.

Doyle RJ, Lee NC. 1986. Microbes, warfare, religion and human institutions. Canadian Journal of Microbiology 32, 193-200.

Eide D, Broderius M, Fett J, Guerinot ML. 1996. A novel ironregulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences 93, 5624–5628.

Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y. 2001. Acyle-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas. Applied and Environmental Microbiology 67(3), 1198-1209. http://dx.doi.org/10.1128/AEM.67.3.1198-1209. 2001

Fitter AH. 1985. Functioning of vesicular-arbuscular mycorrhiza on growth and water relations of plants. New Phytologist. 89, 599-608.

Fortin A, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y. 2002. Arbuscular mycorrhiza on root-organ cultures. Canadian Journal of Botany. 80(1), 1-20. http://dx.doi.org/10.1139/b01-139

Garbaye J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist., 128(2), 197-210. http://dx.doi.org/10.1111/j.14698137.1994.tb04003.x

Garbaye J, Churin JL, Duponnois R. 1992. Effects of substrate disinfection, fungicide treatments and mycorrhization helper bacteria on ectomycorrhizal formation of pedunculate oak (Quercus robur) inoculated with Laccaria laccata in two bare-root nurseries. Biology and Fertility of Soils, 13(1), 55-57. http://dx.doi.org/10.1007/BF00337239

Giovannetti M, Avio L, 2002. Biotechnology of Arbuscular Mycorrhizae. In: Khachatourians, G.G., Arora, D.K. (Eds.), Applied Mycology and Biotechnology 2, Agriculture and Food Production. Elsevier, Amsterdam, 275-310 P.

Guerinot ML, Yi Y. 1994. Iron: nutritious, noxious, and not readily available. Plant Physiolgy 104, 815– 820. 226 Plant biotechnology.

He ZL, Yang XE, Stoffella PJ. 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology. 19(2-3), 125-140. http://dx.doi.org/10.1016/j.jtemb. 2005.02.010

Kabata-Pendias A, Pendias H. 1992. Trace Elements in Soils and Plants, 2nd Ed. CRC Press, Boca Raton, FL.

Khan AG. 1971. Occurrence of Endogone spores in West Pakistan soils. Transactions of the British Mycological Society. 56(2), 217-224.

Khan AG. 1975. Growth Effects of Vesicular-arbuscular Mycorrhiza on Crops in the Field. In: Sanders, F.E., Mosse, B., Tinker, P.B. (Eds.), Endomycorrhizas. Academic Press, New York, 419-439 P.

Khan AG. 2002a. The Significance of Microbes. In: Wong, M.H., Bradshaw, A.D. (Eds.), The Restoration and Management of Derelict Land: Modern Approaches. World Scientific Publishing, Singapore, 80-92 P.

Khan AG. 2002b. The Handling of Microbes. In: Wong, M.H., Bradshaw, A.D. (Eds.), The Restoration and Management of Derelict Land: Modren Approaches. World Scientific Publishing, Singapore, p.149 160.

Kinnersely AM. 1993. The role of phytochelates in plant growth and productivity. Plant Growth Regul, 12, 207–217.

Kramer U, Cotter-Howells JD, Charnock JM, Baker A, Smith A. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635–638. A demonstration of the possible involvement of histidine in Ni aquisition and transport in an Ni hyperaccumulating plant from the genus Alyssum.

Linderman RG, Paulitz TC. 1990. Mycorrhizal-rhizobacterial Interactions. In: Hornb, D. (Ed.), Biological Control of Soil-borne Plant Pathogens. CAB InKhan / J Zhejiang Univ SCIENCE B 2006 7(7):503-514 513 ternational, Wallingford, 261-283 P.

Lovato PE, Gianinazzi-Pearson V, Trouvelot A, Gianinazzi S. 1996. The state of art mycorrhizas micropropagation. Advances in Agriculture, Sciences., 10, 46-52.

Lynch JM. 1990. The Rhizosphere. John Wiley & Sons, West Sussex, UK.

Marschner H. 1995 Mineral Nutrition of Higher Plants, edn 2. London, San Diego: Academic Press.

Marschner P, Baumann K. 2003. Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant and Soil. 251(2), 279-289. http://dx.doi.org/10.1023/A:1023034825871

Mayo K, Davis R, Motta J. 1986. Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia, 78(3), 426-431.

Minerdi D, Bianciotto V, Bonfante P. 2002. Endosymbiotic bacteria in mycorrhizal fungi: from their morphology to genome sequences. Plant and Soil. 244(1/2), 211-219. http://dx.doi.org/10.1023/A:1020211821753

Miransari M, Bahrami HA, Rejali F, Malakouti MJ. 2008. Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Bio Biochem 40, 1197– 1206.

Mohammad A, Khan AG. 2002. Monoxenic in vitro production and colonization potential of AM fungus Glomus intraradices. Indian Journal of Experimental Biology. 40, 1087-1091.

Mohammad A, Khan AG, Kuek C, 2000. Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza, 9(6), 337-339. http://dx.doi.org/10.1007/s005720050278

Mohammad A, Mitra B, Khan AG, 2004. Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric. Ecosystems & Environment 103(1), 245-249. http://dx.doi.org/10. 1016/j.agee.2003.09.017

Mosse B. 1962. The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions Journal of general microbiology 27, 509-520.

Paulitz TC, Linderman RG. 1989. Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytologist. 113(1), 37-45. http://dx.doi.org/10.1111/j.1469-8137.1989.tb02393.x

Pfleger FL, Linderman RG. 1994. Mycorrhizae and Plant Health. Symposium Series, The American Phytopathological Society, St Paul, Minnesota, USA, 344 P.

Pierson LS, Pierson EA, Morello JE, 2002. Positive and Negative Cross-communication among Rhizobacteria. In: Leong, S.A., Allen, C., Triplett, E.W. (Eds.), Biology of Plant-microbe Interactions. International Society for Molecular Plant-microbe Interactions, St Paul, MN, USA, 256-262 P.

Robinson NJ, Tommey AM, Kuske C, Jackson PJ. 1995. Plant metallothioneins. Biochemistry 1993, 295:1–10. Rauser WE: Phytochelatins and related peptides. Plant Physiology 109, 1411–1419.

Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Advances, 17(4-5), 319-339. http://dx.doi.org/10.1016/S0734-9750(99)00014-2

Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio-Technology 13, 468–474.

Salt DE, Prince RC, Pickering IJ, Raskin I. 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109, 1427–1433. A characterization of Cd movement, speciation and accumulation in B. juncea.

Senden MHMH, Van Paassen FJM, Van Der Mer AJGM, Wolterbeek Hth. 1992. Cadmium– citric acid–xylem cell wall intractions in tomato plants. Plant Cell and Environment 15, 71–79.

Shuman LM. 1985. Fractionation method for soil microelements. Soil Science 140(1), 11-22.

Smith SE. 2002. Phosphate uptake and arbuscular activity in mycorrhiza Allium cepa L. Effects of photon irradiance and phosphate nutrition. Australian Journal of Plant Physiology 17, 177–188.

Sylvia DM, Jarstfer AG. 1994a. Sheared root inoculum of vesicular arbuscular mycorrhizal fungi. Applied and Environmental Microbiology 58, 229-232.

Sylvia DM, Jarstfer AG. 1994b. Production of Inoculum and Inoculation with Arbuscular Mycorrhizal Fungi. In: Robson, A.D., Abbott, L.K., Malajczuk, N. (Eds.),Management of Mycorrhizas in Agricture, Horticulture and Forestry. Kluwer, Dordrecht, 231-238 P.

Turnau K, Haselwandter K. 2002. Arbuscular Mycorrhizal Fungi: An Essential Component of Soil Microflora in Ecosystem Restoration. In: Gianinazzi, S., Schuepp, H. (Eds.), Mycorrhizal Technology: from Genes to Bioproducts. Birkhauser, Basel, 137-149 P.

Van Elsas JD, Turner S, Bailey MJ. 2003. Horizontal gene transfer in the phytosphere. New Phytologist., 157(3), 525-537. http://dx.doi.org/10.1046/j.1469-8137.2003.00697.x

Vivas A, Marulanda A, Ruiz-Lozana JM, Barea JM, Azcon R. 2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13(5), 249-256. http://dx.doi.org/10.1007/s00572-003-0223-z

Welch RM, Norvell WA, Schaefer SC, Shaff JE, Kochian LV. 1993. Induction of iron (III) reduction in pea (Pisum sativim L.) roots by Fe and Cu status: does the root-cell plasmalemma Fe(III)- chelate reductase perform a general role in regulating cation uptake? Planta, 190, 555–561.

Xavier IJ, Boyetchko SM. 2002. Arbuscular Mycorrhizal Fungi as Biostimulants and Bioprotectants of Crops. In: Khachatourians, G.G., Arora, D.K. (Eds.), App. Mycol. and Biotechnol. 2, Agriculture and Food Production. Elsevier, Amsterdam, 311-330 P.