Modeling the compression index for fine soils using an intelligent method

Paper Details

Research Paper 01/11/2014
Views (843)
current_issue_feature_image
publication_file

Modeling the compression index for fine soils using an intelligent method

Seyed Mahmood Kashefipour, Mehdi Daryaee
J. Biodiv. & Environ. Sci. 5(5), 197-204, November 2014.
Copyright Statement: Copyright 2014; The Author(s).
License: CC BY-NC 4.0

Abstract

Construction of buildings and different structures leads to soil consolidation, hence, causes soil settlement. Soil settlement depends on numerous factors, for instance, pressure deformation, depletion of pore water, and so forth. One way to calculate soil settlement, is utilizing compression index, which is obtained through consolidation test. Obtaining this index through consolidation test is too time-consuming; thus, researchers have attempted to relate compression index to soil physical parameters such as plasticity limit, liquid limit, void ratio, and relative density, which all could be simply measured; therefore, there is great deal of empirical relations in this regard. In this study, the correlation coefficients between the physical characteristics of fine soil and compression index were investigated using the Artificial Neural Network (ANN). A few but common empirical equations describing the relationship of compression index with other soil properties were evaluated along with the developed ANN model in this study. The results have indicated that among the considered empirical relations, the Rendon-Herrero formula performed better in calculating the compression index. By comparison, the ANN calculates the compression index more accurately and with less error than the Rendon-Herrero formula.

Ahadian J. 2004. Estimation of the compression index with the aid of soil physical parameters in Ahwaz. M.Sc. thesis. Water Sciences Engineering Faculty, Shahid Chamran University of Ahwaz, Iran (In Persian).

Amarasinghe PM, Katti KS, Katti DR. 2012. Insight into role of clay-fluid molecular interactions on permeability and consolidation behavior of Na-montmorillonite swelling clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 138(2), 138-146.

Di Matteo L, Bigotti F, Ricco R. 2011. Compressibility of Kaolinitic clay contaminated with ethanol-gasoline blends. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Technical Note 137(9), 846-849.

Erzin Y, Gumaste SD, Gupta AK, Singh DN.2009.  Artificial  neural  network  (ANN)  models  for determining  hydraulic  conductivity  of  compacted fine-grained soils. Canadian Geotechnical Journal 46(8), 955-968.

Gautam MR, Zhu J, Ye M. 2011. Regularized artificial neural network training for biased data of soil hydraulic parameters. Soil Science 176(11), 567-575.

Hong CS, Shackelford CD, Malusis MA. 2012. Consolidation and hydraulic conductivity of zeolite-amended soil-Bentonite backfills. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 138(1), 15-25.

Karimi Maddahi SS, Hassani M. 2012. Optimal Design of Insulators using Artificial Neural Network (ANN). Journal of Basic and Applied Scientific Research 2(1), 60-64.

Kashefipour SM, Lin B, Falconer FA. 2005. Neural networks for predicting seawater bacterial levels. Proceedings of the Institution of Civil Engineers, Water Management 158, 111-118.

Nagaraj T, Murty BRS. 1985. Predication of the pre-consolidation pressure and recompression index of soils. Geotechnical Testing Journal 8 (4), 199-202.

Namdar-Khojasteh D, Shorafa M, Omid M, Fazeli-Shaghani M. 2010. Application of artificial neural networks in modeling soil solution electrical conductivity. Soil Science 175(9), 432-437.

Nishida Y. 1956. A brief note on compression index of soil. Journal of Soil Mechanics and Foundation Engineering, ASCE 82(3), 1-14.

Park JH, Koumoto T. 2004. New compression index equation. Journal of geotechnical and geoenvironmental engineering 130(2), 223-226.

Rendon-Herrero O. 1980. Universal compression index equation. Journal of the Geotechnical Engineering Division 106(11), 1179-1200.

Sarangi A, Bhattacharya AK. 2005. Comparison of artificial neural network and regression models for sediment loss prediction from Banha watershed in India. Agricultural water management 78(3), 195-208.

Shahin MA, Jaksa MB, Maier HR. 2001. Artificial neural network applications in geotechnical engineering. Australian Geomechanics 36, 49-62.

Skempton AW. 1944. Notes on the compressibility of clays. Quarterly Journal of the Geotechnical Society 102(1-4), 205-209

Sverdrup HU. 1946. The humidity gradient over the sea surface. Journal of Meteorology 3(1), 1-8.

Tareghian R, Kashefipour SM. 2007. Application of fuzzy systems and artificial neural networks for flood forecasting. Journal of Applied Sciences 7(22), 3451-3459.

Terzaghi K, Peck RB. 1968. Soil mechanics in engineering practice, 2nd Ed. Wiley, New York.

Xiong C, Li T. 2011. Application of artificial neural networks to prediction of deformation in deep foundation pit. In Proceeding of meeting held on 26-28 July, Hangzhou, China, Multimedia Technology (ICMT), IEEE Conference Publications, pp. 1448-1453.

Related Articles

Land use conflicts: An impediment to improved agrifood value chain management as perceived by crop farmers in southeast Nigeria

J. U. Chikaire, C. C. Ejiogu, H. I. Duruanyim, T. O. Ogbuji, S. I. Ogbaa, A. O. Kalu, J. I. Ukpabi, A. Rufai, L. C. Izunobi, J. U. Okwudili, C. I. Anah, E. U. Omeire, I. O. Okeoma, J. Nnametu, U. G. Chris-Ejiogu, I. E. Edom, C. N. Atoma, U. S. Awhareno, E. C. Mube-Williams, S. O. Adejoh, A. D. Ude, J. O. Oparaojiaku, C. O. Osuagwu, E. E. Ihem, B. N. Aririguzo, E. C. C. Amaechi, M. N. Osuji, C. A. Acholonu, J. Biodiv. & Environ. Sci. 28(1), 102-113, January 2026.

Farmland and geospatial resource survey for food security promotion among farm families in Imo state, Nigeria

J. U. Chikaire, C. C. Ejiogu, M. N. Osuji, C. A. Acholonu, I. E. Edom, U. S. Awhareno, E. C. Mube-Williams, C. N. Atoma, S. O. Adejoh, H. I. Duruanyim, T. O. Ogbuji, S. I. Ogbaa, A. O. Kalu, J. I. Ukpabi, A. Rufai, L. C. Izunobi, J. U. Okwudili, E. U. Omeire, I. O. Okeoma, J. Nnametu, A. D. Ude, C. I. Anah, J. O. Oparaojiaku, C. O. Osuagwu, E. E. Ihem, B. N. Aririguzo, E. C. C. Amaechi, J. Biodiv. & Environ. Sci. 28(1), 78-95, January 2026.

Phytochemical composition, miticidal and pediculicidal efficacy of ethanolic leaf extracts of neem (Azadirachta indica) and tobacco (Nicotiana tabacum) against Pterolichus obtusus and Goniodes dissimilis

Roel T. Calagui*, Sherwin L. Alota, Jhaysel G. Rumbaoa, Glydel Joy T. Ragutero, Kyrone D. Ancheta, Lovely Grace V. Jacinto, Kjelle Cristlea P. Cabang, Bryan Jerome R. Bassig, J. Biodiv. & Environ. Sci. 28(1), 68-77, January 2026.

Mangroves under pressure: Local threats and management realities in Malamawi Island, Basilan, Philippines

Norvie Semine*, Jill Ruby Parmisana, Ashikeen Tampipi, Chris Rey Lituanas, Wella Tatil, J. Biodiv. & Environ. Sci. 28(1), 56-67, January 2026.

Institutional e-waste management: A knowledge, attitude, and perception study among the administrative staff at Mindanao State University, Iligan Institute of Technology, Philippines

Rezanne Mabyl Burlado*, Rodolfo II Romarate, Peter Suson, Wella Tatil, J. Biodiv. & Environ. Sci. 28(1), 40-55, January 2026.

Biomass and carbon stocks of fine litterfall and coarse woody debris in riparian and non-riparian tropical forests of Carmen, Bohol, Philippines

Carl Anthony G. Budiongan, Jairyl B. Oclarit*, Noel T. Lomosbog, J. Biodiv. & Environ. Sci. 28(1), 24-39, January 2026.

Microhabitat and seasonal influences on terrestrial mollusc communities in a reforested secondary forest, south-eastern Côte d’Ivoire

Amani N’dri Saint-Clair*, Pokou Konan Pacome, N'dri Kouassi Jerome, Otchoumou Atcho, J. Biodiv. & Environ. Sci. 28(1), 12-23, January 2026.