Mollugo oppositifolia leaf tea formulation and its effect against alloxan-induced hyperglycemic male sprague dawley rats
Paper Details
Mollugo oppositifolia leaf tea formulation and its effect against alloxan-induced hyperglycemic male sprague dawley rats
Abstract
Hyperglycemia is one of the most prevalent health concerns worldwide which is rapidly increasing in middle and low–income families. Though Mollugo oppositifolia Linn. Is found throughout the Philippines, its blood glucose-lowering activity in its tea form has not been studied. The study was conducted to determine the hypoglycemic effects in tea – bag and spray – dried form on Sprague Dawley rats injected with 150 mg of alloxan prepared in 0.9 sodium chloride. It is noted that both tea forms have no significant difference as the commercial drug (Glibenclamide) in lowering the blood glucose concentration. This study also evaluated the formulated leaves based on its moisture content, ash content, and microbial determination, which are all within the acceptable range. Sensory evaluation was also done, and it was found that the taste, color, and aroma show characteristics expected of a green tea. It is recommended that a histopathological test should be conducted on the liver. Furthermore, that the bitter after-taste be masked.
Ahmed AM. 2012. Medical plant and human health. In: Ghista DN (ed) Biomedical science, engineering and technology. Intech, 165–190. http://www.intechopen.com/books/biomedicalscience-engineering-and-technology/medical-plant-and-humanhealth
American Diabetes Association. 2019. Standards of Medical Care in Diabetes 2019. The Journal of Clinical and Applied Research and Education: Diabetes Care 42.
Arif T, Sharma B, Gahlaut A, Kumar V, Danbur R. 2014. Anti-diabetic agents from medicinal plants: a review. Chemical Biology Letters 1, 1–13.
Chang CLT, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC. 2013. Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry, Biology, and Potential Application of Selected Plants and Compounds. Evidence-base complementary and alternative medicine. https://doi.org/10.1155/2013/378657
Eroglu E, Tontul I, Topuz A. 2018. Optimization of aqueous extraction and spray drying conditions for efficient processing of hibiscus blended rosehip tea powder. Journal of Food Processing and Preservation 42, 1-9. https://doi.org/10.1111/jfpp.13643
Falciglia M, Freyberg RW, Almenoff PL, D’Alessio DA, Render ML. 2009. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Critical Care Medicine 37, 3001-3009. https://doi.org/10.1097/CCM.0b013e3181b083f7
Ferrara A, Hedderson MM, Albright CL, Brown SD, Ehrlich SF, Caan BJ, Quesenberry CP. 2014. A pragmatic cluster randomized clinical trial of diabetes prevention strategies for women with gestational diabetes: Design and rationale of the Gestational Diabetes’ Effects on Moms (GEM) study. BMC Pregnancy and Childbirth 14, 21. https://doi.org/10.1186/1471-2393-14-21
Hosoda K, Wang MF, Liao ML, Iha M, Clevidence B, Yamamoto S. 2003. Antihyperglycemic Effect of Oolong Tea in Type 2 Diabetes. Diabetes Care 26, 1714-1718. https://doi.org/10.2337/diacare.26.6.1714
Jayawardenaa MHS, de Alwisa NMW, Hettigodaab V, Fernando DJS. 2005. A double blind randomised placebo controlled cross over study of a herbal preparation containing Salacia reticulata in the treatment of type 2 diabetes. Journal of Ethnopharmacology 97, 215-218. https://doi.org/10.1016/j.jep.2004.10.026
Jerine PS, Sabina EP. 2016. Global current trends in natural products for diabetes management: a review. International Journal of Pharmacy and Pharmaceutical Sciences 8, 20–28. https://innovareacademics.in/journals/index.php/ijpps/article/view/10515.
Kabilan SJ, Baskar R, Poorani G. 2019. Herbal Tea Formulation for Health Rejenuvation: Nutritional, Physicochemical and Sensory Analysis. International Journal of Engineering and Advanced Technology 9. https://doi.org/10.35940/ijeat.A1144.1291S419
Okafor GI, Ogbobe NM. 2015. Production and Quality Evaluation of Green and Black Herbal Teas from Moringa oleifera Leaf. Journal of Food Resource Science 4, 62-72. https://doi.org/10.3923/jfrs.2015.62.72
Osadebe P, Odoh E, Uzor P. 2014. Natural products as potential sources of antidiabetic drugs. British Journal of Pharmaceutical Research 4, 2075–2095. https://doi.org/10.9734/BJPR/2014/8382
Ryan EA, Imes S, Wallace C, Jones S. 2000. Herbal tea in the treatment of diabetes mellitus. Clinical and Investigative Medicine 23, 311-317.
Siddiqui M, Khan M, Carline T. 2013. Gender Differences in Living with Diabetes Mellitus. Materia Socio Medica 25, 140. https://doi.org/10.5455/msm.2013.25.140-142
Simpson R, Morris GA. 2014. The anti-diabetic potential of polysaccharides extracted from members of the cucurbit family: A review. Bioactive Carbohydrates and Dietary Fibre 3, 106–114. https://doi.org/10.1016/j.bcdf.2014.03.003
Sonkamble VV, Wagh NS, Kamble LH. 2018. Inhibition of α-amylase and α-glucosidase by (6RS)-22-hydroxy-23, 24, 25, 26, 27-cholestane-3α, 7α, 12α, 24, 25, 26-hexol isolated from acetone extract of Helianthus annuus L. seeds. International Journal of Pharmacy and Pharmaceutical Sciences 10, 39–49. https://doi.org/10.22159/ijpps.2018v10i5.25309
Tsuneki H, Ishizuka M, Terasawa M, Wu JB, Sasaoka T, Kimura I. 2004. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacology, 4. https://doi.org/10.1186/1471-2210-4-18
Whiting DR, Guariguata L, Weil C, Shaw J. 2011. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice 94, 311–321. https://doi.org/10.1016/j.diabres.2011.10.029
WHO. 2018. Diabetes. Retrieved from https://www.who.int/newsroom/factsheets/detail/diabetes
Vian Jethro T. Bariuan, Chasey T. Mabborang, Sheila Mae G. Macanas, Kenneth Christian O. Santiago, Jayvee B. Salomon, Jinky Marie T. Chua, Ramelo B. Ramirez Jr (2020), Mollugo oppositifolia leaf tea formulation and its effect against alloxan-induced hyperglycemic male sprague dawley rats; IJB, V16, N4, April, P71-78
https://innspub.net/mollugo-oppositifolia-leaf-tea-formulation-and-its-effect-against-alloxan-induced-hyperglycemic-male-sprague-dawley-rats/
Copyright © 2020
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0