Monitoring the Diameter growth of irregular trunk trees in the Celtis forest in northern Republic of Congo

Paper Details

Research Paper 03/11/2023
Views (295) Download (37)
current_issue_feature_image
publication_file

Monitoring the Diameter growth of irregular trunk trees in the Celtis forest in northern Republic of Congo

Melain Merland Nguila Bakala, Joseph Yoka, Jean-Joël Loumeto
Int. J. Biosci.23( 5), 24-39, November 2023.
Certificate: IJB 2023 [Generate Certificate]

Abstract

Information on the growth of tropical trees is essential for the management of tropical forests. However, tree diameter measurements taken over irregularities result in negative diameter growth due to trunk shrinkage over time. The use of the close-range photogrammetric approach to harmonise diameter measurements of irregular trunk trees is likely to improve the diameter growth of these trees. This study uses close-range photogrammetric point cloud data and conventional measurements collected on 72 irregular trunk trees at Loundoungou to examine the diameter growth of irregular trunk trees in the Celtis forest in northern Republic of Congo. Significant differences were observed in the diameter above the irregularities and at 1.30 m from the ground between 2014 and 2021, suggesting the evolution of the trunk from 2014 to 2021. The relative change in diameter above the irregularities was 4 times greater than the diameter at 1.30 m above ground. Variations in trunk diameter growth were observed within each diameter type, with the rate of diameter growth above irregularities higher for the data set and for larger diameter trees. Diameter growth models using diameter at 1.30 m above ground were best (lowest AIC and BIC), suggesting that diameter at 1.30 m above ground is, therefore, the most appropriate predictor for irregular trunk trees. The results of this study highlighted the ability of the close-range photogrammetric approach to detect diameter growth at 1.30 m above ground, which is important for improving forest carbon balance estimates and decision-making in tropical forest management.

VIEWS 77

Aakala T, Berninger F, Starr M. 2018. The roles of competition and climate in tree growth variation in northern boreal old-growth forests. Journal of Vegetation Science 29, 1040–1051. https://doi.org/10.1111/jvs.12687

Akpo HA, Atindogbé G, Obiakara MC, Adjinanoukon AB, Gbedolo M, Fonton NH. 2021. Accuracy of common stem volume formulae using terrestrial photogrammetric point clouds: a case study with savanna trees in Benin. Journal of Forestry Research 32, 2415–2422.

Akpo HA, Atindogbé G, Obiakara MC, Adjinanoukon AB, Gbedolo M, Lejeune P, Fonton NH. 2020. Image data acquisition for estimating individual trees metrics: Closer is better. Forests 11(1), 121 – 136. https://doi.org/10.3390/f11010121

Alder D, Synnott T. 1992. Permanent sample plot techniques for mixed tropical forest. Oxford Forestry Institute, University of Oxford, 141 p.

Baribault TW, Kobe RK, Finley AO. 2012. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs 82, 189–203. https://doi.org/10.1890/11-1013.1

Bates D, Mächler M, Bolker B, Walker S. 2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

Bauwens S, Fayolle A, Gourlet-Fleury S, Ndjele LM, Mengal C, Lejeune P. 2017. Terrestrial photogrammetry: a non-destructive method for modelling irregularly shaped tropical tree trunks. Methods in Ecology and Evolution 8, 460–471. https://doi.org/10.1111/2041-210X.12670

Bauwens S, Ploton P, Fayolle A, Ligot G, Loumeto JJ, Lejeune P, Gourlet-Fleury S. 2021. A 3D approach to model the taper of irregular tree stems: making plots biomass estimates comparable in tropical forests. Ecological Applications 31, 1 – 12. https://doi.org/10.1002/eap.2451

Bonada A, Amoroso MM, Gedalof Z, Srur AM, Gallo L. 2022. Effects of climate on the radial growth of mixed stands of Nothofagus nervosa and Nothofagus obliqua along a precipitation gradient in Patagonia, Argentina. Dendrochronologia 74, 125961. https://doi.org/10.1016/j.dendro.2022.125961

Bowman DMJS, Brienen RJW, Gloor E, Phillips OL, Prior LD. 2013. Detecting trends in tree growth: not so simple. Trends in Plant Science 18, 11–17. https://doi.org/10.1016/j.tplants.2012.08.005

Butt N, Slade E, Thompson J, Malhi Y, Riutta T. 2013. Quantifying the sampling error in tree census measurements by volunteers and its effect on carbon stock estimates. Ecological Applications 23, 936–943. https://doi.org/10.1890/11-2059.1

Celes CHS, Araujo RF de, Emmert F, Lima AJN, Campos MAA. 2019. Digital approach for measuring tree diameters in the Amazon forest. Floresta e Ambiente 26, 1–10. https://doi.org/10.1590/2179-8087.038416

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99. https://doi.org/10.1007/s00442-005-0100-x

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC. 2014. Improved allometric models to estimate the above-ground biomass of tropical trees. Global change biology 20, 3177–3190. https://doi.org/10.1111/gcb.12629

Clark DA. 2002. Are Tropical Forests an Important Carbon Sink? Reanalysis of the Long-Term Plot Data. Ecological Applications 12, 3–7. https://doi.org/10.1890/1051-0761(2002)012[0003:ATFAIC]2.0.CO;2

Clark DA, Clark DB. 1999. Assessing the Growth of Tropical Rain Forest Trees: Issues for Forest Modeling and Management. Ecological Applications 9, 981–997. https://doi.org/10.1890/1051-0761(1999)009[0981:ATGOTR]2.0.CO;2

Clark DA, Piper SC, Keeling CD, Clark DB. 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the national academy of sciences 100, 5852–5857. https://doi.org/10.1073/pnas.0935903100

Clark DB, Clark DA. 1996. Abundance, growth and mortality of very large trees in neotropical lowland rain forest. Forest Ecology and Management 80, 235–244. https://doi.org/10.1016/0378-1127(95)03607-5

Clark DB, Ferraz A, Clark DA, Kellner JR, Letcher SG, Saatchi S. 2019. Diversity, distribution and dynamics of large trees across an old-growth lowland tropical rain forest landscape. PLOS ONE 14(11), 1 – 23. https://doi.org/10.1371/journal.pone.0224896

Condit R. 1998. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer Science & Business Media, 97 p.

Condit R, Hubbell SP, Foster RB. 1995. Demography and harvest potential of Latin American timber species: data from a large, permanent plot in Panama. Journal of Tropical Forest Science 7(4), 599–622.

Condit R, Hubbell SP, Foster RB. 1993. Mortality and growth of a commercial hardwood ‘el cativo’, Prioria copaifera, in Panama. Forest Ecology and Management 62, 107–122. https://doi.org/10.1016/0378-1127(93)90045-O

Coomes DA, Allen RB. 2007. Effects of size, competition and altitude on tree growth. Journal of Ecology 95, 1084–1097. https://doi.org/10.1111/j.1365-2745.2007.01280.x

Cushman KC, Bunyavejchewin S, Cárdenas D, Condit R, Davies SJ, Duque Á, Hubbell SP, Kiratiprayoon S, Lum SK, Muller-Landau HC. 2021. Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica 53, 1442–1453. https://doi.org/10.1111/btp.12994

Cushman KC, Muller-Landau HC, Condit RS, Hubbell SP. 2014. Improving estimates of biomass change in buttressed trees using tree taper models. Methods Ecol Evol 5, 573–582. https://doi.org/10.1111/2041-210X.12187

da Silva RP, dos Santos J, Tribuzy ES, Chambers JQ, Nakamura S, Higuchi N. 2002. Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. Forest Ecology and Management 166, 295–301. https://doi.org/10.1016/S0378-1127(01)00678-8

Dong SX, Davies SJ, Ashton PS, Bunyavejchewin S, Supardi MNN, Kassim AR, Tan S, Moorcroft PR. 2012. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proc Biol Sci 279, 3923–3931. https://doi.org/10.1098/rspb.2012.1124

Elzinga C, Shearer RC, Elzinga G. 2005. Observer variation in tree diameter measurements. Western Journal of Applied Forestry 20, 134–137. https://doi.org/10.1093/wjaf/20.2.134

Fayolle A, Engelbrecht B, Freycon V, Mortier F, Swaine M, Réjou-Méchain M, Doucet J-L, Fauvet N, Cornu G, Gourlet-Fleury S. 2012. Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests. PLOS ONE 7, 1 – 10. https://doi.org/10.1371/journal.pone.0042381

Fayolle A, Picard N, Doucet J-L, Swaine M, Bayol N, Bénédet F, Gourlet-Fleury S. 2014a. A new insight in the structure, composition and functioning of central African moist forests. Forest Ecology and Management 329, 195–205. https://doi.org/10.1016/j.foreco.2014.06.014

Fayolle A, Swaine MD, Bastin J-F, Bourland N, Comiskey JA, Dauby G, Doucet J-L, Gillet J-F, Gourlet-Fleury S, Hardy OJ. 2014b. Patterns of tree species composition across tropical African forests. Journal of Biogeography 41, 2320–2331. https://doi.org/10.1111/jbi.12382

Feeley KJ, Davies SJ, Ashton PS, Bunyavejchewin S, Nur Supardi MN, Kassim AR, Tan S, Chave J. 2007. The role of gap phase processes in the biomass dynamics of tropical forests. Proceedings of the Royal Society B: Biological Sciences 274, 2857–2864. https://doi.org/10.1098/rspb.2007.0954

Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJ, Berry NJ, Bird M. 2011. Height-diameter allometry of tropical forest trees. Biogeosciences 8, 1081–1106. https://doi.org/10.5194/bg-8-1081-2011

Fétéké F, Fayolle A, Dainou K, Bourland N, Dié A, Lejeune P, Doucet J-L, Beeckman H. 2016. Variations saisonnières de la croissance diamétrique et des phénologies foliaire et reproductive de trois espèces ligneuses commerciales d’Afrique centrale. Bois & Forêts des Tropiques 330, 3–21. https://doi.org/10.19182/bft2016.330.a31315

Forni E, Rossi V, Gillet J-F, Bénédet F, Cornu G, Freycon V, Zombo I, Alberny E, Mayinga M, Istace V, Gourlet-Fleury S. 2019. Dispositifs permanents de nouvelle génération pour le suivi de la dynamique forestière en Afrique centrale : bilan en République du Congo. Bois & Forêts des Tropiques 341, 55 – 70. https://doi.org/10.19182/bft2019.341.a31760

Gourlet-Fleury S, Mortier F, Fayolle A, Baya F, Ouédraogo D, Bénédet F, Picard N. 2013. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 1–10. https://doi.org/10.1098/rstb.2012.0302

Grogan J, Schulze M. 2008. Estimating the number of trees and forest area necessary to supply internationally traded volumes of big-leaf mahogany (Swietenia macrophylla) in Amazonia. Environmental Conservation 35, 26–35. https://doi.org/10.1017/S0376892908004554

Hess C, Härdtle W, Kunz M, Fichtner A, von Oheimb G. 2018. A high-resolution approach for the spatiotemporal analysis of forest canopy space using terrestrial laser scanning data. Ecology and evolution 8, 6800–6811. https://doi.org/10.1002/ece3.4193

Hijmans RJ, Van Etten J, Mattiuzzi M, Sumner M, Greenberg JA, Lamigueiro OP, Bevan A, Racine EB, Shortridge A. 2013. Raster package in R. Version. https://mirrors.sjtug.sjtu.edu.cn/cran/web/packa ges/raster/raster.pdf.

Kaasalainen S, Krooks A, Liski J, Raumonen P, Kaartinen H, Kaasalainen M, Puttonen E, Anttila K, Mäkipää R. 2014. Change detection of tree biomass with terrestrial laser scanning and quantitative structure modelling. Remote Sensing 6, 3906–3922. https://doi.org/10.3390/rs6053906

King GM, Gugerli F, Fonti P, Frank DC. 2013. Tree growth response along an elevational gradient: climate or genetics? Oecologia 173, 1587–1600. https://doi.org/10.1007/s00442-013-2696-6

Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ. 2016. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207. https://doi.org/10.1038/nature16476

Ligot G, Gourlet-Fleury S, Dainou K, Gillet J-F, Rossi V, Mazengué M, Ekome SN, Nkoulou YS, Zombo I, Forni E, Doucet J-L. 2022. Tree growth and mortality of 42 timber species in central Africa. Forest Ecology and Management 505, 119889. https://doi.org/10.1016/j.foreco.2021.119889

Luoma V, Saarinen N, Kankare V, Tanhuanpää T, Kaartinen H, Kukko A, Holopainen M, Hyyppä J, Vastaranta M. 2019. Examining changes in stem taper and volume growth with two-date 3D point clouds. Forests 10, 382–396. https://doi.org/10.3390/f10050382

Lyytikäinen-Saarenmaa P, Tomppo E. 2002. Impact of sawfly defoliation on growth of Scots pine Pinus sylvestris (Pinaceae) and associated economic losses. Bulletin of Entomological Research 92, 137–140. https://doi.org/10.1079/BER2002154

Martin-Ducup O, Ploton P, Barbier N, Momo Takoudjou S, Mofack G, Kamdem NG, Fourcaud T, Sonké B, Couteron P, Pélissier R. 2020. Terrestrial laser scanning reveals convergence of tree architecture with increasingly dominant crown canopy position. Functional Ecology 34, 2442–2452. https://doi.org/10.1111/1365-2435.13678

Metcalf CJE, Clark JS, Clark DA. 2009. Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology 25, 1–12. https://doi.org/10.1017/S0266467408005646

Mokroš M, Vỳbošt’ok J, Grznárová A, Bošela M, Šebeň V, Merganič J. 2020. Non-destructive monitoring of annual trunk increments by terrestrial structure from motion photogrammetry. PloS one 15, 1–14. https://doi.org/10.1371/journal.pone.0230082

Momo Takoudjou S, Ploton P, Sonké B, Hackenberg J, Griffon S, De Coligny F, Kamdem NG, Libalah M, Mofack GI, Le Moguédec G. 2018. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods in Ecology and Evolution 9, 905–916.

Muller-Landau HC, Detto M, Chisholm RA, Hubbell SP, Condit R. 2014. Detecting and projecting changes in forest biomass from plot data. Forests and global change 17, 381–416.

Nath CD, Dattaraja HS, Suresh HS, Joshi NV, Sukumar R. 2006. Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India. Journal of Biosciences 31, 651–669. https://doi.org/10.1007/BF02708418

Newbery DM, Schwan S, Chuyong GB, van der Burgt XM. 2009. Buttress form of the central African rain forest tree Microberlinia bisulcata, and its possible role in nutrient acquisition. Trees 23, 219–234.

Nölke N, Fehrmann L, I Nengah SJ, Tiryana T, Seidel D, Kleinn C. 2015. On the geometry and allometry of big-buttressed trees – a challenge for forest monitoring: new insights from 3D-modeling with terrestrial laser scanning. iForest – Biogeosciences and Forestry 8, 574–582. https://doi.org/10.3832/ifor1449-007

Pebesma E, Bivand R, Pebesma ME, RColorBrewer S, Collate AAA. 2012. Package ‘sp.’ The Comprehensive R Archive Network.

Pereira IRC, Morais VM de C, Emmert F, Nascimento RGM. 2021. Size, Ecology, and Seasonality Affect the Monthly Diametric Growth of Trees in a Secondary Forest. Floresta Ambient. 28, 1–10. https://doi.org/10.1590/2179-8087-FLORAM-2021-0009

Phillips OL, Malhi Y, Vinceti B, Baker T, Lewis SL, Higuchi N, Laurance WF, Vargas PN, Martinez RV, Laurance S, Ferreira LV, Stern M, Brown S, Grace J. 2002. Changes in Growth of Tropical Forests: Evaluating Potential Biases. Ecological Applications 12, 576–587. https://doi.org/10.1890/1051-0761(2002)012[0576:CIGOTF]2.0.CO;2

Picard N, Gourlet-Fleury S. 2008. Manuel de référence pour l’installation de dispositifs permanents en forêt de production dans le Bassin du Congo. COMIFAC, 271 p.

Ploton P, Mortier F, Barbier N, Cornu G, Réjou-Méchain M, Rossi V, Alonso A, Bastin J-F, Bayol N, Bénédet F, Bissiengou P, Chuyong G, Demarquez B, Doucet JL, Droissart V, Kamdem NG, Kenfack D, Memiaghe H, Moses L, Sonké B, Texier N, Thomas D, Zebaze D, Pélissier R, Gourlet-Fleury S. 2020. A map of African humid tropical forest above-ground biomass derived from management inventories. Sci Data 7, 221–234. https://doi.org/10.1038/s41597-020-0561-0

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing. version 4.2.1 (2022-06-23 ucrt). Vienna, Austria. http://www.R-project.org/.

Roussel J-R, Auty D, Coops NC, Tompalski P, Goodbody TRH, Meador AS, Bourdon J-F, de Boissieu F, Achim A. 2020. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment 251, 112061 – 112076. https://doi.org/10.1016/j.rse.2020.112061

Rozendaal DMA, Phillips OL, Lewis SL, Affum-Baffoe K, Alvarez-Davila E, Andrade A, Aragão LEOC, Araujo-Murakami A, Baker TR, Bánki O, Brienen RJW, Camargo JLC, Comiskey JA, Djuikouo Kamdem MN, Fauset S, Feldpausch TR, Killeen TJ, Laurance WF, Laurance SGW, Lovejoy T, Malhi Y, Marimon BS, Marimon Junior B-H, Marshall AR, Neill DA, Núñez Vargas P, Pitman NCA, Poorter L, Reitsma J, Silveira M, Sonké B, Sunderland T, Taedoumg H, ter Steege H, Terborgh JW, Umetsu RK, van der Heijden GMF, Vilanova E, Vos V, White LJT, Willcock S, Zemagho L, Vanderwel MC. 2020. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, 1–11. https://doi.org/10.1002/ecy.3052

Scolforo HF, Scolforo JRS, Thiersch CR, Thiersch MF, McTague JP, Burkhart H, Ferraz Filho AC, de Mello JM, Roise J. 2017. A new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species. Forest Ecology and Management 400, 578–586. https://doi.org/10.1016/j.foreco.2017.06.048

Sheil D. 1995. A critique of permanent plot methods and analysis with examples from Budongo Forest, Uganda. Forest Ecology and Management 77, 11–34. https://doi.org/10.1016/0378-1127(95)03583-V

Shen Y, Santiago LS, Shen H, Ma L, Lian J, Cao H, Lu H, Ye W. 2014. Determinants of Change in subtropical tree diameter growth with ontogenetic stage. Oecologia 175, 1315–1324. https://doi.org/10.1007/s00442-014-2981-z

Sheppard J, Morhart C, Hackenberg J, Spiecker H. 2017. Terrestrial laser scanning as a tool for assessing tree growth. iForest: Biogeosciences and Forestry 10, 172–179.

Srinivasan S, Popescu SC, Eriksson M, Sheridan RD, Ku NW. 2014. Multi-temporal terrestrial laser scanning for modeling tree biomass change. Forest Ecology and Management 318, 304–317.

Talbot J, Lewis SL, Lopez-Gonzalez G, Brienen RJ, Monteagudo A, Baker TR, Feldpausch TR, Malhi Y, Vanderwel M, Murakami AA. 2014. Methods to estimate above-ground wood productivity from long-term forest inventory plots. Forest Ecology and Management 320, 30–38.

Weiskittel AR, Hann DW, Kershaw Jr JA, Vanclay JK. 2011. Forest growth and yield modeling. John Wiley & Sons, 85 p.

Wenzel K, Rothermel M, Fritsch D, Haala N. 2013. Image acquisition and model selection for multi-view stereo. Int. Arch. Photogramm. Remote Sens. Journal of Spatial Information Science 40, 251–258.

Witzmann S, Matitz L, Gollob C, Ritter T, Kraßnitzer R, Tockner A, Stampfer K, Nothdurft A. 2022. Accuracy and precision of stem cross-section modeling in 3D point clouds from TLS and caliper measurements for basal area estimation. Remote Sensing 14, 1923–1950.

Wu X, Zhou S, Xu A, Chen B. 2019. Passive measurement method of tree diameter at breast height using a smartphone. Computers and Electronics in Agriculture 163, 104875–104886. https://doi.org/10.1016/j.compag.2019.104875

Yrttimaa T, Junttila S, Luoma V, Calders K, Kankare V, Saarinen N, Kukko A, Holopainen M, Hyyppä J, Vastaranta M. 2023. Capturing seasonal radial growth of boreal trees with terrestrial laser scanning. Forest Ecology and Management 529, 120733–120743. https://doi.org/10.1016/j.foreco.2022.120733

Yrttimaa T, Luoma V, Saarinen N, Kankare V, Junttila S, Holopainen M, Hyyppä J, Vastaranta M. 2022. Exploring tree growth allometry using two-date terrestrial laser scanning. Forest Ecology and Management 518, 120303–120316. https://doi.org/10.1016/j.foreco.2022.120303

Yrttimaa T, Luoma V, Saarinen N, Kankare V, Junttila S, Holopainen M, Hyyppä J, Vastaranta M. 2020. Structural Changes in Boreal Forests Can Be Quantified Using Terrestrial Laser Scanning. Remote Sensing 12, 2672–2692. https://doi.org/10.3390/rs12172672