Welcome to International Network for Natural Sciences | INNSpub

Paper Details

Research Paper | February 1, 2015

| Download 1

Morphological and genetic variation in Aegilops geniculata Roth. from Tunisia

Khaled Mguis, Asma Mahjoub, Mejda Abassi, Ali Albouchi, Zeineb Ouerghi, Ben Brahim Nadia, Zoubeir Béjaoui

Key Words:

Int. J. Agron. Agri. Res.6(2), 8-21, February 2015


IJAAR 2015 [Generate Certificate]


Aegilops geniculata Roth is an annual grass relative to cultivated wheats and is widely distributed in North Africa. In order to understand the diversity of this species, 13 populations collected in different bioclimatic areas in north and central Tunisian were analyzed using morphological and molecular characters. Principal component analyses (PCA) based on the agro-morphological characters allowed the separation of populations in five mainly bioclimatic groups characterized by different morphological patterns. Populations originated from humid coastal areas were characterized by good vegetative development, vigorous spikes and caryopses. Samples collected from mean altitude with sub-humid climate had late germination and a large growing cycle a high biomass production and weak caryopses. Populations collected from intermediate and high mountains with sub-humid and semi-arid conditions presented good fertility and high yield-related. Individuals with early germination, weak vegetative development and high caryopses yield characteristics of the coastal areas and plains in sub-humid and the upper semi-arid climate. Populations originated from steppic highlands in upper arid conditions and mean and high altitudes mountains with upper semi-arid were characterized by low morphological development, weak fertility reduction of yield-related and shortening of growing cycle. Individuals were distinguished successively by Phenological, morphological and Yield-related traits. RAPD analysis based on the phenotypic variability and genetic distances revealed a significant variation within and between populations associated with bioclimatic conditions, in particular winter temperature. Genetic diversity was higher in populations growing under warm bioclimates than in those from cold bioclimates.


Copyright © 2015
By Authors and International Network for
Natural Sciences (INNSPUB)
This article is published under the terms of the Creative
Commons Attribution Liscense 4.0

Morphological and genetic variation in Aegilops geniculata Roth. from Tunisia

Baalbaki R, Hajj-Hassan N, Zurayk R. 2006. Aegilops species from semiarid areas of Lebanon: variation in quantitative attributes under water stress. Crop Science 46, 799-806.

Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Chikida N, Zelenin AV, Raupp WJ, Friebe B, Gill BS. 2004. Genome differentiation in Aegilops. 4. Evolution of U-genome cluster. Plant Systematics and Evolution 246, 45-76.

Battandier JA, Trabut L. 1902. Flore analytique et synoptique de l’Algérie et de la Tunisie. edn. Vve Girault, Alger. p 410.

Ben Brahim N, Sebei H, Gharbi MS. 2002. Collecte des populations d’Aegilops ovata auct. et évaluation de la diversité génétique pour l’amélioration du blé. 13th Eds, journées Biologiques, Hammamet, pp : 75.

Campos ET, Gutiérrez Espinosa MA, Warburton ML, Varela AS, Villegas Monter A. 2005. Characterization of Mandarin (Citrus spp.) using morphological and ALFP markers. Interciencia 30 (11), Caracas. ISSN 0378-1844 version impresa.

Colmer TD, Flowers TJ, Munns R. 2006. Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany 57, 1059-1078.

De Bustos A, Jouve N. 2006. Characterization and phylogenetic analysis of the genes coding for high molecular wei glutenin subunits in three diploid species of Aegilops. International Journal of Plant Sciences 167, 359-366.

Eig A. 1929. Monographisch-kritische U¨ bersicht der Gattung Aegilops in German. Feddes Repert 55, 1–228.

Farooq S. 2004. Salt tolerance in Aegilops species: a success story from research and production to large-scale utilization of salt tolerant wheats. In: Taha FS, Ismaial S, Jaradat A (eds) Prospects of saline agriculture in the Arabian peninsula. Amheerst Scientific Publishers, Massachusetts, p. 121-134.

Farooq S. 2002. Aegilops ovata: a potential gene source for improvement of salt tolerance of wheat. In: Ahmad R, Malik KA (eds) Prospects for saline agriculture, vol 37. Kluwer Academic Publishers, Dordrecht, p 123-130.

Farooq S, Shah, TM, Asghar M. 1996. Intergeneric hybridization for wheat improvement: V. Production of and metaphase 1 chromosome analysis in F1 hybrids of wheat (Triticum aestivum) with Aegilops ovata L. Cereal Research Communications 24, 155-161.

Feldman M. 1965. Further evidence for natural hybridization between tetraploid species of Aegilops. sect. Pleionathera. Evolution 19, 162-174.

Fernandez-Calvin B, Orellana J. 1990. High molecular weight glutenin subunit variation in the Sitopsis section of Aegilops. Implications for the origin of the B genome of wheat. Heredity 65, 455-463.

Ferriol M, Picó B, de Fernandez CP, Nuez F. 2004. Molecular diversity of germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Science 44, 653-664.

Gill BS, Sharma HC, Raupp WJ, Browder IE, Hatchett JH, Harvey TL, Moseman JG, Waines JG. 1985. Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hussian fly, and greenbug. Plant Disease 69, 314-316.

Guadagnuolo R, Bianch D, Felder F. 2001. Specific genetic markers for wheat, spelt, and four wild relatives: Comparison of isozymes, RAPDs and wheat microsatellites. Genome 44, 610-621.

Hammer K. 1980. Vorarbeiten zur Monographi-schen Darstellung von Wildpflanzen-Sortimenten: Aegilops L. Kulturpflanze 28, 33-180.

Hamrick JL, Godt MJW. 1997. Effects of life history on genetic diversity in plants species. In: Silvertown J, Franco M, Harper JL (eds) Plant life histories-ecology phylogeny and evolution. Cambridge University Press, London, p 313.

Hegde SG, Valkoun J, Waines JG. 2002. Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species-A preliminary survey. Crop Science 42: 608-614.

Hegde SG, Valkoun J, Waines JG. 2000. Genetic diversity in wild wheats and goatgrass. Theoretical and Applied Genetics 101, 309-316.

Hernendez P, Martin A, Dorado G. 1999. Development of SCARs by direct sequencing of RAPD products: a practical tool for the introgression and marker assisted selection of wheat. Molecular Breeding 5, 245-253.

Kimber G, Feldman M. 1987. Wild wheat. An introduction. Special Report 353, College of Agriculture, University of Missouri, Columbia, p. 142.

Lage J, Warburton ML, Crossa J, Skovmand B, Andersen SB. 2003. Assessment of genetic diversity in synthetic hexaploid wheat and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica 134, 305-317.

Maire R. 1955. Flore de l’Afrique du Nord. Eds Le Chevalier, vol III, Paris, p 65-69.

Mguis K, Ben Brahim N, Albouchi A, Yakoubi-Tej M, Mahjoub A, Ouerghi Z. 2008. Phenotypic responses of the wild wheat relative Aegilops geniculata Roth and Wheat (Triticum durum Desf.) to experimentally imposed salt stress. Genetic Resource and Crop Evolution 55, 665-674

Monte JV, Casanova C, Soler C. 1999. Genetic variation in Spanish populations of the genus Aegilops revealed by RAPDs. Agronomie 19, 419-427.

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 4321-4325.

Nevo E, Goldberg E, Beiles A, Brown AHD, Zohary D. 1982. Genetic diversity and environmental associations of wild wheat. Triticum dicoccoides in Israel. Theoretical and Applied Genetics 78, 260-264.

Pazy B, Zohary D. 1965. The process of introgression between Aegilops polyploids. Natural hybridization between A. variabilis, A. ovata and A. biuncialis. Evolution 19, 385-394.

Perrino P, Laghetti G, Cifarelli S, Volpe N, Spagnoletti-Chichester PL, Zeuli UK. 1993. Wild wheats in southern Italy. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, p. 361-368

Quezel P, Santa S. 1962. Nouvelle flore de l’Algérie et des régions désertiques méridionales. Tome I. Edition du CNRS, Paris, p. 558.

Rekika D, Zaharieva M, Stankova P, Xu X, Souyris I, Monneveux P. 1998. Abiotic stress tolerance in Aegilops species. In: Nachit MM et al. Durum Research Network, Proceeding of the SEWANA, South Europe, West Asia and North Africa, ICARDA, Aleppo, Syria, p. 113-118.

Rodriguez-Quijano M, Nieto-Taladriz MT, Carrillo JM. 2000. Polymorphism of high molecular weight glutenin subunits in three species of Aegilops. Genetic Resource and Crop Evolution 48, 599-607.

Roldan-Ruiz L, van Eeuwijk FA, Gilliland TJ, Dubreuil P, Dillmann C. Lallemand J, de Loose M, Baril CP. 2001. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theoretical and Applied Genetics 103, 1138-1150

Sambrook J, Fritish EF, Maniatis T. 1989. Molecular cloning a laboratory manual. 2 eds. Clod spring Harbor laboratory, New York, p. 165.

Schut JW, Qi X, Stam P. 1997. Association between relationships measures based on AFLP markers, pedigree data and morphological traits in barley. Theoretical and Applied Genetics 95, 1161-1168

Stebbins GL. 1971. Chromosomal evolution in higher plants. Arnold, London, p. 21.

Sun X, Hu S, Qian W, Hao S, Zhang A, Wang D. 2006. Characterization of HMW glutenin subunits from Aegilops searsii and identification of a novel variant HBM glutenin subunit. Theoretical and Applied Genetics 113(4), 631-641

Tao Y, Manners MM, Ludlow M, Henzell M. 1993. DNA polymorphism in grain sorghum (Sorghum bicolour L. Moench). Theoretical and Applied Genetics 86, 679-688.

Van Slageren MW. 1994. Wild Wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub.& Spach) Eig (Poaceae). Wageningen Agricultural University Papers, Wageningen, The Netherlands, p. 94-97.

Witcombe JR. 1983. A guide to the species of Aegilops L. International Board for plant Genetic Resources. Wheat Program IBPGR, Rome, p. 74.

Zaharieva M, David J, This D, Monneveux P. 1999. Analyse de la diversité génétique d’Aegilops geniculata Roth en Bulgarie. Cahiers Agriculture 8, 181-188.

Zaharieva M, Dimov A, Stankova P, David J, Monneveux, P. 2003. Morphological diversity and potential interest for wheat improvement of three Aegilops L. species from Bulgaria. Genetic Resource and Crop Evolution 50, 507-517

Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P. 2001. Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sciences 41, 1321-1329.

Zaharieva M, Suenaga K, William HM, Mujeeb-Kazi A. 2003. Microsatellite markers for detection Aegilops geniculata Roth and U genome chromosomes in wheat background. Annual Wheat Newslett 49, 75-78

Zhang XY, Wang R, Dong YS. 1996. RAPD polymorphisms in Aegilops geniculata Roth. (Ae. ovata auct. non L.). Genet Resource Crop Evolution 43, 429-433.

Zhukovsky PM. 1928. Kritiko-systematischeskii obzor vydov roda Aegilops L. (Specierum generis Aegilops L. revisio critica). Trudy Prikl Bot Genet Selekc 18, 417-609

Zohary D. 1965. Colonizer species in the wheat group. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, p. 403-423.


Style Switcher

Select Layout
Chose Color
Chose Pattren
Chose Background