Morphometric relationship of mediterranean mussels Mytilus galloprovincialis, (Lamark, 1819) in Algerian West coasts

Paper Details

Research Paper 01/04/2019
Views (280) Download (13)
current_issue_feature_image
publication_file

Morphometric relationship of mediterranean mussels Mytilus galloprovincialis, (Lamark, 1819) in Algerian West coasts

Almulsi Ebrahim Mohahid Ahmad, Rouane-Hacene Omar, Mouffok Salim, Boutiba Zitouni, Bouderbala Mohamme
Int. J. Biosci.14( 4), 399-408, April 2019.
Certificate: IJB 2019 [Generate Certificate]

Abstract

Mytilus galloprovincialis is very common in almost Algerian rocky coasts. It shows complex ecological and behavioral characteristics which vary according to the environment where it lives. The aim of this study was to realize the follow-up of the biometric parameters of bivalve molluscs in algerian coastal area, through analyzing the morphometric diversity, by calculating the different relationships. In this investigation, the morphometric diversity of 800 individuals of marine mussels from four rocky sites in the west coasts of Algerian were analyzed. Upon arrival, mussels were inspected and dead animals discarded. Fifty individuals were used for biometric characterization Shell length (L), height (H), and thickness (E). Each mussel was opened with a stainless steel knife. The correlation coefficient was used for regression equations (Lt=aWtb, Lt=AH+b, H=aE+b). The results showed that according to the global scale, the three allometric relations highlighted in this work revealed that the increase of the length shell was less important than those of the height and the thickness. On other hand, the increase of the thickness was slower than the height of all the specimens studied from all sites. The results reflected the adaptive response of the mussel following the physical and the ecological environment where it lives. The variation of the relations: length/height and length/thickness in the mussels from the four studied sites showed that this species had a tendency to grow in height and width faster than the length. This study revealed significant differences between the morphometric characteristics of mussel populations of the four sites.

VIEWS 21

Absher TM, Vergara EM, Christo SW. 2000. Growth and allometry of the larval shell of the Brazilian oyster Crassostrea brasiliana (Lamarck, 1819) (Bivalvia: Ostreidae). Ophelia 53, 105-112.

Aldrich JC, Crowley M. 1986. Condition and variability in Mytilus edulis (L.) from different habitats in Ireland. Aquaculture 52, 273-286.

Alexander W, Shingleton. 2010. Allometry is the study of how these processes scale with body size and with each other, and the impact this has on ecology and evolution. Department of Zoology, Michigan State University © 2010 Nature Education.

Alunno-Bruscia M, Bourget E, Frechette M. 2001. Shell allometry and length-mass-density relationship for Mytilus edulis in an experimental food regulated situation. Marine Ecology Progress Series 219, 177-188.

Benali I, Boutiba Z, Merabet A, Chèvre N. 2015. Integrated use of biomarkers and condition indices in mussels (Mytilus galloprovincialis) for monitoring pollution and development of biomarker index to assess the potential toxic of coastal sites. Mar. Pollut. Bull 95, 385-394.

Blay J. 1989. Morphometric length–weight relationships and length distributions of five populations of the freshwater bivalve Aspatharia sinuate (Unionacea, Mutelidae) in Nigeria. Malacologia 30, 365-372.

Borrero FJ, Hilbish TJ. 1988. Temporal variation in shell and soft tissue growth of the mussel Geukensia demissa. Marine Ecology Progress Series 42, 9-15.

Brown RA, Seed R. 1977. A comparison of the reproductive cycles of Modiolus modiolus (L.), Cerastoderma edule (L.) and Myttlus Myttlus edults (L.) in Strangford Lough, Northern Ireland. Oecologia 30, 173-188.

Browne RA, Seed R, O’Connor RT. 1976. A comparison of relative growth in Cerastoderma (=Cardium) edule, Modiolus modiolus and Mytilus edulis (Mollusca: Bivalvia). J Zool Lond 179, 297-315.

Comesana, AS, Posada D, Sanjuan A. 1998. Mytilus galloprovincialis Lmk. in northern Africa. Journal of Experimental Marine Biology and Ecology 223, 271-283.

Cossa D, Bourget E, Pouliot D, Piuze J, Chanut JP. 1980. Geographical and seasonal variations in the relationship between trace metal content and body weight in Mytilus edulis Mar. Biol 58, 7-14.

Culha ST, Celik MY, Culha M, Karayucel I, Gundogdu A. 2008. The trace elements in the raft cultivated mussels (Mytilus galloprovincialis Lamarck, 1819) From Sinop Peninsula, In the Southern Black Sea. J. Anim. Vet. Adv 7(12), 1618-1623.

Dame RF. 2012. Ecology of Marine Bivalves: An Ecosystem Approach, 2nd ed CRC Press, Boca Raton.

Elhadj Z, Boutiba A, Belbachir B. 2012. Mytilus galloprovincialis as mussel watch for butyltins tin copper and zinc contamination from antifouling paint particles in west algerian coastal waters. Journal of environmental protection 3, 1047-1053.

FAO Fishstat. 2002. Problématique de la pêche en Méditerranée.

Fischer W, Schneider M, Bauchot ML. 1987. Fiches FAO d’identification des espèces pour les besoins de la pêche. Méditerranée et Mer Noire. Zone de pêche 37. Révision I. Vol. I .Végétaux et Invértébrés p 760.

Franz DR. 1993. Allometry of shell and body weight in relation to shore level in the intertidal bivalve Geukensia demissa (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology 174, 193-207.

Frechette M, Lefauvre D. 1990. Discriminating between food and space limitation in benthic suspension feeders using self-thinning relationships. Marine Ecology Progress Series 65, 15-23.

Gaspar MB, Santos MN, Vasconcelos P, Monteiro CC. 2002. Shell morphometric relationships of the most common bivalve species (Mollusca: Bivalvia) of the Algarve coast (southern Portugal). Hydrobiologia 477, 73-80.

Gaspar MB, Santos MN, Vasconcelos P. 2001. Weight–length relationships of 25 bivalve species (Mollusca: Bivalvia) from the Algarve coast (southern Portugal). J Mar Biol Ass UK 81, 805-807.

Gherras HT, Boutiba Z, Benguedda W, Shaposhnikov S. 2016. Active biomonitoring of mussels Mytilus galloprovincialis with integrated use of micronucleus assay and physiological indices to assess harbor pollution. Marine Pollution Bulletin 110, 52-64.

Golikov AN, Dolgolenko MA, Maximovich NV, Scarlato OA. 1990. Theoretical approach to marine biogeography. Mar. Ecol. Prog. Ser 63, 289-301.

Gosling E. 2003. Bivalve Molluscs: Biology, Ecology and Culture. Blackwell Science, p 443.

Gould SJ. 1966. Allometry and Size in Ontogeny and Phylogeny. Biological Review of the Cambridge Philosophical Society 41, 587.

Grimes S, Ruellet T, Dauvin JD, Boutiba Z. 2010. Ecological quality status of the soft-bottom communities on the Algerian coast: general patterns and diagnosis. Mar. Pollut. Bull 60, 1969-1977.

Hilbish TJ. 1986. Growth trajectories of shell and soft tissue in bivalves: seasonal variation in Mytilus edulis L. Journal of Experimental Marine Biology and Ecology 96, 103-113.

Karakoltsidis PA, Zotos A, Constantinides SM. 1995. Composition of the commercially important Mediterranean finfish, crustaceans and molluscs. Journal of Food Composition and Analysis 8(3), 258-273.

Kemp P, Bertness MD. 1983. Snail shape and growth rates evidence for plastic shell allometry in Littorina littorea. Proceedings of the National Academy of Sciences 81, 811-813.

Lalami-Taleb R. 1971. Facteur de répartition vertical du phytoplankton au large d’Alger. Pelagos, Bull. Inst. Océanogr. Alger 3(3), 1-186.

Lourenc CR, Nicastro KR, Serra EA, Castilho R, Zardi GI. 2015. Behind the mask: cryptic genetic diversity of Mytilus galloprovincialis along southern European and northern African shores. Journal of Molluscan Studies 1-8. doi:10.1093/mollus/eyv004;

Nakaoka M. 1992. Spatial and seasonal variation in the growth rate and secondary production of Yoldia notabilis in Otsuchi Bay, Japan, with reference to the influence of food supply from the water column. Marine Ecology Progress Series 88, 215-223.

Orban E, Di Lena G, Nevigato T, Casini I, Marzetti A, Caproni R. 2002. Seasonal changes in meat content, condition index and chemical composition of mussels (Mytilus galloprovincialis) cultured in two different Italian sites. Food Chemistry 77, 57-65.

Peters RH. 1983. Cambridge Studies in Ecology: The Ecological Implications of Body Size. Cambridge Univer- sity Press, N.Y. p 329.

PNUE/PAM. 2004. Programme des nations unies pour l’environnement. Plan d’action pour la méditérranée PAM, MED POL. Lignes directrices pour l’élaboration d’indicateurs d’état écologique et de réduction de stress. No. 154 de la série de rapport techniques de PAM.

Rao KP. 1953. Rate of water propulsion in Mytilus californianus as a function of latitude. Biol. Bull, mar, biol. Lab. Woods Hole Mass 104, 171-181.

Richardson CA, Seed R, Naylor E. 1990. Use of internal growth bands for measuring individual and population growth rates in Mytilus edulis from offshore production plat- forms. – Marine Ecology Progress Series 66, 259-265.

RNO Edition. 2006. Surveillance du milieu marin. Travaux du réseau National d’Observation de la qualité du milieu marin. Ifremer.

Rouane-Hacene O, Abdelghani F, Boutiba Z. 2008. Evaluation of organochlorinated compounds in Hake (Merluccius merluccius L., 1758) from Algerian western coast. In: International Conference on Modelling & Monitoring of Marine Pollution, INOC-INCO, Décembre.

Rouane-Hacene O, Boutiba Z, Belhaouaria BM, Guibbolini-sabatier M, Francour P, Risso-de Faverney C. 2015. Seasonal assessment of biological indices, bioaccumulation and bioavailability of heavy metals in mussels Mytilus galloprovincialis from Algerian west coast, applied to environmental monitoring. Oceanologia 57, 362-374.

Sahin SA, Sahin A, Okumus I. 2011. Spat Settlement and Growth of Mediterranean Mussel (Mytilus galloprovincialis) in Fish Cage Farms in Southeastern Black Sea Coast. J. Anim. Vet. Adv 10, 2357-2362.

Salkeld PN. 1995. Aspects of reproduction associated with the use of a segmented regression to describe the relation- ship between body weight and shell length of Mytilus edulis. Marine Ecology Progress Series 124, 117-128.

Schmidt-Nielsen, K. 1984. Scaling – Why is Animal Size So Important? Cambridge University Press, N.Y., pp 21-32.

Seed R. 1973. Absolute and allmetric growth in the mussel Mytilus edulis L. (Mollusca, Bivalvia). Proc. Malac. Soc. Lond 40, 343-357.

Sukhotin AA, Maximovich NV. 1994. Variability of growth rate in Mytilus edulis L. from the Chupa Inlet (the White Sea). Journal of Experimental Marine Biology and Ecology 176, 15-26.

Taleb MZ, Benghali S, Kaddour A, Boutiba Z. 2007. Monitoring the biological effects of pollution on the Algerian west coast using mussels Mytilus galloprovincialis. Oceanologia 49(4), 543-564.

Trussell GC. 2000a. Phenotypic clines, plasticity, and morphological tradeoffs in an intertidal snail. Evolution 54, 151-166.

Trussell GC. 2000b. Predator-induced plasticity and morphological tradeoffs in latitudinal separated populations of Littorina obtusata. Evolutionary Ecology Research 2, 803-822.