NaCl stress-induced growth, water and ions contents changes on in vitro selection of salt tolerant and salt sensitive callus of wheat (Triticum durum Desf.)

Paper Details

Research Paper 01/08/2011
Views (392) Download (14)
current_issue_feature_image
publication_file

NaCl stress-induced growth, water and ions contents changes on in vitro selection of salt tolerant and salt sensitive callus of wheat (Triticum durum Desf.)

Ayolié Koutoua, El Yacoubi Houda, Atmane Rochdi, Kouakou Kouakou Laurent, Kouakou Tanoh Hilaire
Int. J. Biosci.1( 4), 12-25, August 2011.
Certificate: IJB 2011 [Generate Certificate]

Abstract

Callus cultures tolerant to NaCl were developed from eight wheat genotypes using in vitro selection techniques. The accumulation of inorganic (Na+, Cl and K+) solutes, water content and relative fresh weight were determined in selected (tolerant and sensitive) calli after a NaCl shock in order to evaluate their implication in salt tolerance of the selected lines. No growth reduction was observed in salt-tolerant calli compared to control while a significant (P<0.05) decrease about 46.54% was observed in salt sensitive ones when both were cultivated under NaCl stress. Water content is significantly (P<0.05) high in salt-sensitive calli than salt-tolerant ones. Selected calli accumulate less K+ as compared with control. However, K+ content of salt-tolerant calli is greater than that of salt-sensitive. Accumulation of Na+ and Cl were more important in salt-sensitive calli in comparison with salt-tolerant ones while K+ content was lower in salt-sensitive than in salt-tolerant calli when both were exposed to salt. The results indicated Na+ and Cl exclusion combined to less K+ accumulation may play a key role in in vitro salt-tolerance in wheat calli lines obtained by in vitro selection and they could contribute mainly to counteract the negative effects of salt stress in wheat tolerant calli. Comparison of K+/Na+ ratio permitted to classify Sebou, Anouar and Tarek which are as most salt-tolerant wheat genotypes and on contrary, Marzak, Ourgh, Massa and Amjad as salt-sensitive wheat genotypes. K+/Na+ ratio can be use as a criterion of wheat genotypes classification.

VIEWS 19

Almansouri    M,    Kinet    JM,    Lutts    S.    1999. Compared effects of sudden and progressive impositions of salt stress in three Durum wheat (Triticum durum Desf.) cultivars. Journal of Plant Physiology 154, 743-752.

Alvarez I, Tomaro LM, Bernavides PM. 2003. Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissue and Organ Culture 74, 51-59.

Ashraf M, Ahmad S. 2000. Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Research 66, 115-127.

Ashraf M, O’Leary JW. 1996. Responses of some newly evolved salt-tolerant genotypes of spring wheat to salt stress. I. Yield components and ion distributi on. Journal of Agronomy Crop Science 176, 91-101.

Babourina O, Leonova T, Shabala S, Newman I. 2000. Effect of sudden salt stress on ion fluxes in intact wheat suspension cells. Annual of Botany 85, 759-767.

Badu S, Sheeba A, Yogameenakshi P, Anbumalarmathi J, Rangasamy P. 2007. Effect of salt stress in the selection of salt tolerant hydrids in rice (Oriza sativa L.) under in vitro and in vivo condition. Asian Journal of Plant Sciences 6, 137-142.

Basu S, Gangopadhyay G, Mukherjee BB. 2002. Salt tolerance in rice in vitro: implication of accumulation of Na+, K+ and proline. Plant Cell Tissue and Organ Culture 69, 55-64.

Benavides PM, Marconi LP, Gallego MS, Comba EM, Tomaro LM. 2000. Relationship between antioxidant defence systems and salt-tolerance in Solanum tuberosum. Australian Journal of Plant Physiology 27, 273-278.

Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K. 2007. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. Journal of Experimental Botany 58, 301-308.

Cano EA, Perez-Alfocea F, Moreno V, Caro M, Bolarin MC. 1998. Evaluation of salt tolerance in cultivated and wild tomato species through in vitro shoot apex culture. Plant Cell Tissue and Organ Culture 53, 19-26.

Cotlove E. 1965. Determination of Cl in biological material. In: Glick D, ed. Methods of biochemical analysis. Interscience Pub New York, 277-392.

Elkahoui S, Hernandez AJ, Abdelly C, Ghrir R, Limam F. 2005. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science 168, 607-613.

El-Sayed H, Kirkwood RC. 1992. Solutes accumulation in soybean (Glycine max L.) cell adapted to NaCl salinity. Phyton (Horn) 31, 233-249.

El Yacoubi H, Rochdi A, Ayolié K, Rachidi A. 2004. Sélection et évaluation de lignées de cals stables et tolérantes vis-à-vis du stress salin chez le citrange „Troyer‟ (Citrus sinensis (L.) x Poncirus trifoliata (L.) Raf.). Fruits 59, 25-337.

Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Skali-Senhaji N. 2006. Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. African Journal of Biotechnology 5, 1488-1493.

Fallon KM, Phillips R. 1989. Responses to water stress in adapted and unadapted carrot cell suspension cultures. Journal of Experimental Botany 40, 68-687.

Farrukh J. 2002. In Vitro salt tolerance in wheat. I. Growth and Ions Accumulation in callus. International Journal of Agriculture Biology 4, 459-461.

Flowers TJ. 2004. Improving crop salt tolerance. Journal of Experimental Botany 55, 307-319.

Gandonou CB, Abrini J, Idaomar M, Skali SN. 2005. Effect of NaCl on growth ions and proline accumulation in sugarcane (Saccharum sp.) callus culture. Belgian Journal of Botany 138, 173-180.

Gandonou CB, Errabii T, Abrini J, Idaomar M, Skali SN. 2006. Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tissue and Organ Culture 87, 9-16.

Gamborg OL, Miller RA, Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50, 151-158.

Haouala F, Ferjani H, Ben El Hadj S. 2007. Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et du chlore (Cl) dans les parties aériennes et les racines du ray-grass anglais et du chiendent. Biotechnology, Agronomy, Society and Environment 11, 235-244.

Koutoua A, El Yacoubi H, Rochdi A . 2007 . I nfluence du 2,4-D et de l‟explant embryonnaire sur la callogenèse du blé dur. Bulletin de la Société de Pharmacie de Bordeaux 146, 97-112.

Kripkyy O, Kerkeb L, Molina A, Belver A, Rodrigues-Rosales P, Donaire PJ. 2001. Effects of salt-adaptation and salt-stress on extracellular acidification and microsome phosphohydrolase activities in tomato cell suspensions. Plant Cell Tissue and Organ Culture 66, 41-47.

Krizek DT. 1981. Introduction of proceedings of ASHS workshop on adaptation to water stress in plants. Hortscience 16, 24-29.

Lutts S, Kinet JM, Bouharmont J. 1996. Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. Journal of Plant Physiology 149, 186-195.

Lutts S, Bouharmont J, Kinet JM. 1999. Physiological characterization of salt-resistant rice (Oryza sativa) somaclones. Australian Journal of Botany 47, 835-849.

Mansour MM, Salama KH, Ali FZ, Abou HA. 2005. Cell and plant responses to NaCl in Zea Mays L. Cultivars differing in salt tolerance. Genetic Applied and Plant Physiology 31, 29-41.

Maathuis FJ, Amtmann A. 1999. K+ nutrition and Na+ toxicity, the basis of cellular K/Na ratios. Annals of Botany 84, 123-133.

Mezni M, Albouchi A, Bizid E, Hamza M. 2002. Effet de la salinité des eaux d‟irrigation sur la nutrition minérale chez trois variétés de luzerne pérenne (Medicago sativa). Agronomie 22, 283-291.

Morgan JM. 1984. Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology 35, 299-319.

Munns R, Hare RA, James RA, Rebetzke GJ. 1999. Genetic variation for improving the salt tolerance of durum wheat. Austrian Journal of Agriculture Research 51, 69-74.

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum 15, 473-497.

Naureen G, Naqvi FN. 2010. Salt tolerance classification in wheat genotypes using reducing sugar accumulation and growth characteristics. Emirate Journal of Food and Agriculture 22, 308-317.

Ndayiragije A, Lutts S. 2006. Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl. Journal of Plant Physiology 163, 506-516.

Noaman SH, Lamis DS, El-Sayed AH, Eman ES. 2004. In Vitro Selection for Water Stress Tolerant Callus Line of Helianthus annus L. Cv. Myak. International Journal of Agriculture Biology 6, 13-18.

Novozamsky I, Houba VJ, Van Der Lee JJ, Can ER, Mingorance MD. 1993. A convenient wet digestion procedure for multielement analysis of plant materials. Communication in Soil Science and Plant Analysis 24, 2595-2605.

Piri K, Anceau C, El Jaafari S, Lepoivre P, Semal J. 1994. Sélection in vitro de plantes androgenétiques de blé tendre résistantes à la salinité. In : quel avenir pour l‟amélioration des plantes ? ed. AUPEL-URELF, Paris, John Libbey Eurotext, 311-320.

Poustini K, Siosemardeh A. 2004. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Research 85, 125-133.

Purushotham MG, Patil V, Raddey PC, Prasad TG, Vajranabhaiah SN. 1998. Development of in vitro PEG stress tolerant cell lines in two groundnut (Arachis hypogaea L.) genotypes. Indian Journal Plant Physiology 3, 49-51.

Qian   YL,    Wilhelm   SJ,   Marcum    KB.   2001. Comparative response of two Kentucky bluegrass cultivars to salinity stress. Crop Science 41, 1895-1900.

Rains DW. 1989. Plant tissue and protoplast culture: applications to stress physiology and biochemistry. In: Hamlyin GJ, Flowers TJ, Jones MB, ed. Plant under stress. Cambridge Univ. Press, New York, Port Chester, Melbourne, Sydney, 181-196.

Rochdi  A,  El Yacoubi  H,  Rachidai  A.  2003. Comportement vis-à-vis de la salinité de cals de porte-greffes d‟agrumes Citrus aurantium, Citrange troyer et Poncirus trifoliata : évaluation de critères certifiant la réponse des agrumes au stress salin. Agronomie 23, 643-649.

Sabbah S, Tal M. 1990. Development of callus and suspension cultures of potato resistant to NaCl and mannitol and their response to stress. Plant Cell Tissue and Organ Culture 21, 119-128.

Sacchi AG, Morgutti S, Abruzzese A, Alisi C, Cocucci M, Espen L, Leva RA, Muleo R, Negrini N, Cocucci MS. 1995. Changes in some physiological and biochemical parameters during two subcultures in Kiwi (Actinidia deliciosa) callus. Plant Science 106, 107-113.

Sairam RK, Veerabhadra RK, Srivastava GC. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163, 1037-1046.

Santos-Diaz MS, Ochoa-Alejo N. 1994. PEG-tolerant cell clones of chili pepper: Growth, osmotic potentials and solute accumulation. Plant Cell Tissue and Organ Culture 37, 1-8.

Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. 1982. Living with water stress: Evolution of osmolyte systems. Science 217, 1214-1222.

Wahid A. 2004. Analysis of toxic and osmotic effects of sodium chloride on leaf growth and economic yield of sugarcane. Botanical Bulletin of Academia Sinica 45, 133-141.

Wilson C, Lesch SM, Griveve CM. 2000. Growth stage modulates salinity tolerance of New Zealand spinach (Tetragonia tetragonioides, Pall.) and Red Orach (Atriplex hortensis L.). Annals of Botany 85, 501-509.

Wu SJ, Ding L, Zhu JK. 1996. SOS 1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617-627.

Wyn JRG, Gorham J. 1986. The potential for enhancing the salt tolerance of wheat and other important crops. Outlook on Agriculture 15, 33-39.

Zaman B, Niazi BH, Athar M, Ahmad M. 2005. Response of wheat plants to sodium and calcium ion interaction under saline environment. International Journal of Environmental Science and Technology 2, 7-12.