Nanocrystals: A review

Paper Details

Review Paper 01/04/2020
Views (595) Download (76)
current_issue_feature_image
publication_file

Nanocrystals: A review

B. Nitish, K. Pavithra, Singam Malathi, Khilifa Fathelrahman Khalifa Abdelmagid, S. Jeganath
Int. J. Biosci.16( 4), 331-344, April 2020.
Certificate: IJB 2020 [Generate Certificate]

Abstract

Nanotechnology in many relevant fields, like medicine and pharmacy, can impact our lives enormously over the next decade. Transfer of substances into the nano dimension improves their physical characteristics that have been used in pharmaceutics to create a new revolutionary formulating method for poorly soluble drugs: nanocrystals for medicines. The nanocrystals of drugs are not part of the future; the first drugs are still in the marketplace. Commercially applicable processing techniques, pearl milling, and homogenization by high pressure are checked. This addresses the mechanics behind the product nanocrystals and improvements in their physical properties. Poorly soluble small molecules usually pose translational obstacles due to their poor solubility, poor bioavailability and difficulties in formulating. Nano crystallization is a flexible process with the added advantage of a provider-free delivery method to save poorly soluble drugs. We include a thorough overview of nanocrystals in this study, including a focus on their clinical interpretation. The study also shines a light on medically authorized nanocrystal medicinal items including those under production.

VIEWS 106

Anger S. 2005. Pharmazeutische Technologie.  Berlin, Freie Universität; PhD Thesis.

Anselmo AC, Mitragotri S. 2014. An overview of clinical and commercial impact of drug delivery systems. Journal of Control Release 190, 15‐28. http://dx.doi.org/10.1016/j.jconrel.2014.03.053

Bae YH, Park K. 2011. Targeted drug delivery to tumors: myths, reality and possibility. Journal of Control Release153, 198‐205. http://dx.doi.org/10.1016/j.jconrel.2011.06.001

Bhol KC, Alroy J, Schechter PJ. 2004. Anti‐inflammatory effect of topical nanocrystalline silver cream on allergic contact dermatitis in a Guinea pig model. Clinical and Experimental Dermatology 29, 282‐287. http://dx.doi.org/10.1111/j.1365- 2230.2004.01515.x

Bhol KC, Schechter PJ.  2005. Topical nanocrystalline silver cream inhibits expression of matrix metalloproteinase‐9 in animal models of allergic contact dermatitis. The British Journal of Dermatology 152(6), 1235-42. http://dx.doi.org/10.1111/j.1365-2133.2005.06575.x

Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR.  2016. Nanoparticle‐based medicines: a review of FDA‐approved materials and clinical trials to date. Pharmaceutical Research 33, 2373‐2387. http://dx.doi.org/10.1007/s11095-016-1958-5

Boleininger J, Kurz A, Reuss V, Sönnichsen C. 2006.  Microfluidic continuous flow synthesis of rod‐shaped gold and silver nanocrystals. Physical Chemistry Chemical Physics 8, 3824‐3827. https://doi.org/10.1039/B604666E

Brough C, Williams RO.  2013. Amorphous solid dispersions and nano‐crystal technologies for poorly water‐soluble drug delivery. International Journal of Pharmaceutics 453, 157‐166. http://dx.doi.org/10.1016/j.ijpharm.2013.05.061

Bruno JA, Doty BD, Gustow E. 1992. Method of grinding pharmaceutical substances. US Patent 5518187; USA.

Bruno RP, McIlwrick R. 1999. Microfluidizer processor technology for high performance particle size reduction, mixing and dispersion. European Journal of Pharmaceutics and Biopharmaceutics 56, 29–36.

Bushrab NF, Müller RH. 2003. Nanocrystals of poorly soluble drugs for oral administration. Journal of New Drugs. 5, 20–2.

Caster JM, Patel AN, Zhang T, Wang A. 2017. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. wiley interdiscip rev nanomed nanobiotechnol journal 9, e1416. http://dx.doi.org/10.1002/wnan.1416

Chen H, Khemtong C, Yang X, Chang X, Gao J. 2011. Nanonization strategies for poorly water‐soluble drugs. Drug Discovery Today 16, 354‐360. http://dx.doi.org/10.1016/j.drudis.2010.02.009

Chong-Hui G, Grant DJW. 2001. Estimating the relative stability of polymorphs and hydrates from heats of solution and solubility data. Journal of Pharmaceutical Sciences 909, 1277–87. https://doi.org/10.1002/jps.1080

Cinzia De Vita VC. 2004. Nanostructured hybrid materials from aqueous polymer dispersions. Advances in Colloid and Interface Science 108–109C, 167–85. http://dx.doi.org/10.1016/j.cis.2003.10.017

De Jong WH, Borm PJA. 2008. Drug delivery and nanoparticles: applications and hazards.  International Journal of Nanomedicine 3, 133‐149. http://dx.doi.org/10.2147/ijn.s596

Gao L, Liu G, Ma J. 2013. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharmaceutical Research 30, 307‐324. http://dx.doi.org/10.1007/s11095-012-0889-z

Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. 2012. Drug nanocrystals: in vivo performances. Journal of Controlled Release 160, 418‐430. http://dx.doi.org/10.1016/j.jconrel.2012.03.013

Gassmann P, List M, Schweitzer A. 1994.  Hydrosols – alternatives for the parenteral application of poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics 40, 64–72.

George J, Sabapathi SN. 2015. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Science and Applications 8, 45‐54 http://dx.doi.org/10.2147/NSA.S64386.

Grau MJ. Dissertation. Pharmazeutische Technologie. Berlin: Freie Universität; 2000. Untersuchungen zur Lösungsgeschwindigkeit, Sättigungslöslichkeit und Stabilität von hochdispersen Arzneistoffsuspensionen.

Hancock BC, Parks M. 2000. What is the true solubility advantage for amorphous pharmaceuticals? Pharmaceutical Research 174, 397–404 http://dx.doi.org/10.1023/a:1007516718.048

Harrison MR, Hahn NM, Pili R. 2011.  A phase II study of 2‐methoxyestradiol (2ME2) NanoCrystal® dispersion (NCD) in patients with taxane‐refractory, metastatic castrate‐resistant prostate cancer (CRPC). Investigational New Drugs 29, 1465‐1474. http://dx.doi.org/10.1007/s10637-010-9455-x

He Y, Xia DN, Li QX, Tao JS, Gan Y, Wang C. 2015. Enhancement of cellular uptake, transport and oral absorption of protease inhibitor saquinavir by nanocrystal formulation. Acta Pharmacologia Sinica 36, 1151‐1160 http://dx.doi.org/10.1038/aps.2015.53.

Junghanns J, Müller R. 2008. Nanocrystal technology, drug delivery and clinical applications. International Journal of Nanomedicine 3(3), 295‐309.

 Kalepu S, Nekkanti V. 2015. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharma Sinica B 5, 442‐453. https://doi.org/10.1016/j.apsb.2015.07.003

Kanellos M. Moore says nanoelectronics face tough challenges. CNet News. 2005. [online]. 9 March. url

Kazimierski P, Alexander. Von Humboldt Foundation Conference 2005. Piotr: Alexander von Humboldt Foundation; Nanotechnology for medicine.

Keck CM, Bushrab NF, Müller RH. Nanopure® nanocrystals for oral delivery of poorly soluble drugs. Particles; April 20–23, 2002; Orlando, Florida, USA. 2004.

Kipp JE, Wong JCT, Doty MJ, Microprecipitation method for preparing submicron suspensions. US Patent 6607784; USA: 2003.

Koshani R, Madadlou AA 2018. Viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends in Food Science & Technology 71, 268‐273. https://doi.org/10.1016/j.tifs.2017.10.023

Kreuter J, Alyautdin RN, Kharkevich DA. 1995. Passage of peptides through the blood – brain barrier with colloidal polymer particles nanoparticles. Brain Research 674(1), 171–4. http://dx.doi.org/10.1016/0006-8993(95)00023-j

 Lee BK, Yun YH, Park K. 2015. Smart nanoparticles for drug delivery: boundaries and opportunities. Chemistry of Engineering and Science 125, 158‐164. http://dx.doi.org/10.1016/j.ces.2014.06.042

Lee S, Nam K, Kim MS. 2005. Preparation and characterization of solid dispersions of itraconazole by using aerosol solvent extraction system for improvement in drug solubility and bioavailability. Archieves of Pharmacia Research 287, 866–74.

List MA, Sucker H. Pat No. GB 2200048. Great Britian: 1988.

Lu PS, Inbaraj BS, Chen BH. 2018. Determination of oral bioavailability of curcuminoid dispersions and nanoemulsions prepared from Curcuma longa Linnaeus. Journal of the Science of Food and Agriculture 98, 51‐63. http://dx.doi.org/10.1002/jsfa.8437

Lu Y, Chen Y, Gemeinhart RA, Wu W, Li T. 2015. Developing nanocrystals for cancer treatment. Nanomedicine. 10, 2537‐2552. http://dx.doi.org/10.1002/jsfa.8437

Lu Y, Li Y, Wu W. 2016. Injected nanocrystals for targeted drug delivery. Acta Pharma Sinica B 6, 106‐113. http://dx.doi.org/10.1016/j.apsb.2015.11.005

Lu Y, Qi J, Dong X, Zhao W, Wu W. 2017. The in vivo fate of nanocrystals. Drug Discovery Today 22, 744‐750. http://dx.doi.org/10.1016/j.drudis.2017.01.003

 Lyczak J, Schechter P. 2005. Nanocrystalline silver inhibits antibiotic‐, antiseptic‐resistant bacteria. American Society for Clinical Pharmacology and Therapeutics 77, P60‐P60. https://doi.org/10.1016/j.clpt.2004.12.119

Malamatari M. 2018. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discovery Today. 23, 534‐547. http://dx.doi.org/10.1016/J.DRUDIS. 2018. 01.016.

Maudens P, Seemayer CA, Thauvin C, Gabay C, Jordan O, Allémann E. 2018. Nanocrystal‐polymer particles: extended delivery carriers for osteoarthritis treatment. Small 14. http://dx.doi.org/170310810.1002/smll.201703108.

Merisko-Liversidge E, Liversidge GG, Copper ER. 2003. Nanosizing: a formulation approach for poorly-water-soluble compounds. European Journal of Pharmaceutical Sciences 18, 113–20. http://dx.doi.org/10.1016/s0928-0987(02)00251-8

Merisko‐Liversidge E, Liversidge GG. 2011. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly‐water soluble compounds using wet media milling technology. Advanced Drug Delivery Reviews 63, 427‐440. http://dx.doi.org/10.1016/j.addr.2010.12.007

Merisko-Liversidge E. 2002. Nanocrystals: Resolving pharmaceutical formulation issues associated with poorly water-soluble compounds. Particles; April 20–23, Orlando, Florida, USA.

Merkle RC. 1999. Biotechnology as a route to nanotechnology. Trends in Biotechnology 17, 271-4 http://dx.doi.org/10.1016/s0167-7799(99)01335-9

Miao X, Yang W, Feng T, Lin J, Huang P. 2017. Drug nanocrystals for cancer therapy. Wiley Interdisciplinary Reviews Nanomedicine and Nano biotechnology 10, e1499 http://dx.doi.org/10.1002/wnan.1499.

Möschwitzer J. Pharmazeutische Technologie. Freie Universität; Berlin: 2005. PhD Thesis (in preparation)

Möschwitzer JP, Müller RH. 2013. Factors influencing the release kinetics of drug nanocrystal‐loaded pellet formulations. Drug Development and Industrial Pharmacy 39, 762‐769. https://doi.org/10.3109/03639045.2012.702347

Möschwitzer JP. 2013. Drug nanocrystals in the commercial pharmaceutical development process. International Journal of Pharmaceutics 453, 142‐156. http://dx.doi.org/10.1016/j.ijpharm.2012.09.034

Müller BW, Bleich J. 1996. Production of drug loaded microparticles by the use of supercritical gases with the Aerosol Solvent Extraction System (ASES) process. Journal of Microencapsulation 132, 131–9. http://dx.doi.org/10.3109/0265204960 9052902

Müller RH, Becker R, Kruss B. 1999.Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. US Patent 5858410; USA:

Müller RH, Jacobs C, Kayser O. 2003. DissoCubes – a novel formulation for poorly soluble and poorly bioavailable drugs. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery systems. New York: Marcel Dekker; p. 135–49.

Muller RH, Jacobs C, Kayser O. 2001. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews.  471, 3–19. http://dx.doi.org/10.1016/s0169-409x(00)00118-6

Muller RH, Keck CM. 2004. Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. Journal pf Biotechnology 113, 151‐170. http://dx.doi.org/10.1016/j.jbiotec.2004.06.007

Müller RH, Lück M, Kreuter J. Arzneistofträgerpartikel für die gewebsspezifische Arzneist off applikation. Germany: 1998. PCT/EP98/06429.

Müller RH, Möschwitzer JP. 2005. Method and apparatus for the production of ultrafine particles and coating of such particles. German 53 862.2 Application.

Müller RH, Pardeike J, Hommoss A. Nanoparticles in therapeutics: drug nanocrystals and lipid nanoparticles. MSTI-Congress NanoTrends 2006; Berlin, Germany.

Müller RH, Peters K, Becker R. 1995. Nanosuspensions – a novel formulation for the IV administration of poorly soluble drugs. 1st World Meeting of the International Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology; Budapest.

Müller RH. 2002. Nanopure technology for the production of drug nanocrystals and polymeric particles. 4th World Meeting of the Italian Association of Professors and Academic Researchers of Pharmaceutics, Pharmaceutical Technology, Biopharmaceutics and Regulatory Affairs; Florence, Italy.

Mura S, Nicolas J, Couvreur P. 2013. Stimuli‐responsive nanocarriers for drug delivery. Nature Materials. 12, 991‐1003. New Biotic. Accessed December 19, 2018. https://doi.org/10.1038/nmat3776   https://www.newbiotic.com/

Noyes A, Whitney W. 1897. The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society. 19, 930–4 http://dx.doi.org/10.1021/ja02086a003

Pahl MH. Zerkleinerungstechnik. Cologne: TÜV Rheinland GmbH; 1991.

Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. 2014 Engineered nanocrystal technology: in‐vivo fate, targeting and applications in drug delivery. Journal of Controlled Release 183, 51‐66. http://dx.doi.org/10.1016/j.jconrel.2014.03.030

Peltonen L, Hirvonen J. Drug nanocrystals–versatile option for formulation of poorly soluble materials. International Journal of Pharmaceutics 537, 73‐83. http://dx.doi.org/10.1016/j.ijpharm.2017.12.005

Peltonen L, Hirvonen J. 2010. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. Journal of Pharmacy and Pharmacology 62, 1569‐1579. http://dx.doi.org/10.1111/j.2042-7158. 2010.01022.x

Raghava Srivalli KM, Mioshra B. 2016. Drug nanocrystals: A way toward scale‐up. Saudi Pharmaceutical Journal 24(4), 386‐404. http://dx.doi.org/10.1016/j.jsps.2014.04.007

Savjani KT, Gajjar AK, Savjani JK. 2012. Drug solubility: importance and enhancement techniques. ISRN Pharmacology. 012, 195727 https://doi.org/10.5402/2012/195727

Shackleford DM, Faassen WA, Houwing N. 2003. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. Journal of Pharmacology and Experimental Therapeutics 306(3), 925–33. http://dx.doi.org/10.1124/jpet.103.052522

Shegokar R, Müller RH. 2010. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. International Journal of Pharmaceutics 399, 129‐139. http://dx.doi.org/10.1016/j.ijpharm.2010.07.044

Sonvico F, Mornet S, Vasseur S. 2005. Folate‐conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments.  Bioconjugate Chemistry 16, 1181‐1188. http://dx.doi.org/10.1021/BC050050Z.

Speiser PP. 1998. Poorly soluble drugs: a challenge in drug delivery. In: Müller RH, Benita S, Böhm B, editors. Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Medpharm Stuttgart: Scientific Publishers; p 15–28

Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. 2018. Potential applications and human biosafety of nanomaterials used in nanomedicine. Journal of Applied Toxicology 38, 3‐24. http://dx.doi.org/10.1002/jat.3476

Tunick MH, Van Hecken DL, Cooke PH, et al. 2002. Transmission electron microscopy of mozzarella cheeses made from microfluidized milk. Journal of Agriculture and Food Chemistry 50, 99–103. http://dx.doi.org/10.1021/jf010633c

Tuomela A, Saarinen J, Strachan CJ, Hirvonen J. 2016. Production, applications and in vivo fate of drug nanocrystals. Journal of Drug Delivery Science and Technology 34, 21‐31. https://doi.org/10.1016/j.jddst.2016.02.006

US Department of Health and Human Services, Food and Drug Administration Center for Drug Evaluation and Research. 2017. Waiver of in vivo bioavailability and bioequivalence studies for immediate‐release solid Oral dosage forms based on a biopharmaceutics classification system guidance for industry. Biopharmaceutics. 1‐19.

Van Eerdenbrugh B, Van den Mooter G, Augustijns P. 2008. Top‐down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. International Journal of Pharmaceutics 364, 64‐75. https://doi.org/10.1016/j.ijpharm.2008.07.023

Velikov K. Colloidal delivery systems for functional food design. 9th Annual NSTI Nanotechnology Conference and Trade Show, Nanotechnology 2006; Boston, Massachusetts, USA. 2006.

Wang X, Zhuang J, Peng Q, Li Y. A 2005. General strategy for nanocrystal synthesis. Nature 437, 121‐124 https://doi.org/10.1038/nature03968

Willems L, Van der Geest R, de Beule K. 2001. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. Journal of Clinical therapeutics and Pharmcy 26, 159–61 https://doi.org/10.1046/j.1365-2710.2001.00338.x