Nanotechnology in medicine: A comprehensive review of emerging trends, innovations and therapeutic applications
Paper Details
Nanotechnology in medicine: A comprehensive review of emerging trends, innovations and therapeutic applications
Abstract
Nanotechnology deals with the manipulation of materials at the nanometer scale and applied as a transformative approach in various fields including medicine. It offers an innovative solution for the prevention, diagnosis and treatment of various diseases. Nanoparticles play vital role in medicine due to their small size, stability and ability to interact effectively with ligands. Their size and shape, high carrier capacity and compatibility with hydrophilic and hydrophobic substances sort out the limitations of traditional treatments and enhance the tissue targeting. Nanoparticles not only improving treatment efficacy but also reducing adverse effects. Targeted drug delivery improves patient compliance and overall quality of life. Lipid based nanoparticles, polymeric nanoparticles, metal and metal oxide nanoparticles are not only utilized for drug delivery systems and diagnostic imaging, but also used for various therapeutic applications due to their antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer and cardioprotective effects. Green synthesis of plant-derived nanoparticles further enhances these benefits, providing an environment eco-friendly approach. Despite significant advancements, there remains a critical need for comprehensive evaluations of the latest progress in organic, inorganic and carbon-based nanoparticles and their applications across diverse therapeutic domains. This review addresses this gap by providing a detailed and updated analysis of the roles and applications of nanoparticles in treating critical diseases, emphasizing their transformative potential in influencing the future of medical therapies.
Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA.2022. Resveratrol-Selenium Nanoparticles Alleviate Neuroinflammation and Neurotoxicity in a Rat Model of Alzheimer’s Disease by Regulating Sirt1/miRNA-134/GSK3β Expression. Biological trace element research 200, 5104–5114. https://doi.org/10.1007/s12011-021-03073-7
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. 2019. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of controlled release: official journal of the Controlled Release Society 315, 1–22. https://doi.org/10.1016/j.jconrel.2019.09.018
Ahangarpour A, Oroojan AA, Khorsandi L, Kouchak M, Badavi M. 2018. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin-Nicotinamide-Induced Diabetic Model and Myotube Cell of Male Mouse. Oxidative medicine and cellular longevity, 7496936. https://doi.org/10.1155/2018/7496936
Akagi S, Nakamura K, Matsubara H, Kondo M, Miura D, Matoba T, Egashira K, Ito H. 2016. Intratracheal Administration of Prostacyclin Analogue-incorporated Nanoparticles Ameliorates the Development of Monocrotaline and Sugen-Hypoxia-induced Pulmonary Arterial Hypertension. Journal of cardiovascular pharmacology 67, 290–298. https://doi.org/10.1097/FJC.0000000000000352
Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. 2022. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Frontiers in endocrinology 13, 800714. https://doi.org/10.3389/fendo.2022.800714
Alkaladi A, Abdelazim AM, Afifi M. 2014. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. International journal of molecular sciences 15, 2015–2023. https://doi.org/10.3390/ijms15022015
Allijn IE, Czarny BMS, Wang X, Chong SY, Weiler M, da Silva AE, Metselaar JM, Lam CSP, Pastorin G, de Kleijn DPV, Storm G, Wang JW, Schiffelers RM. 2017. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. Journal of controlled release: official journal of the Controlled Release Society 247, 127–133. https://doi.org/10.1016/j.jconrel.2016.12.042
Altammar KA. 2023. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in microbiology 14, 1155622. https://doi.org/10.3389/fmicb.2023.1155622
Ansari MJ, Anwer MK, Jamil S, Al-Shdefat R, Ali BE, Ahmad MM, Ansari MN. 2016. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug delivery 23, 1972–1979. https://doi.org/10.3109/10717544.2015.1039666
Antoniou AI, Giofrè S, Seneci P, Passarella D, Pellegrino S. 2021. Stimulus-responsive liposomes for biomedical applications. Drug discovery today 26, 1794–1824. https://doi.org/10.1016/j.drudis.2021.05.010
Astefanei A, Núñez O, Galceran MT. 2015. Characterisation and determination of fullerenes: A critical review. Analyticachimicaacta 882, 1–21. https://doi.org/10.1016/j.aca.2015.03.025
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. 2019. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. The Journal of pharmacy and pharmacology 71, 1185–1198. https://doi.org/10.1111/jphp.13098
Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S, Gurunathan S. 2010. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. Journal of nanobiotechnology 8, 16. https://doi.org/10.1186/1477-3155-8-16
Berehu HM, Patnaik S. 2024. Biogenic Zinc Oxide Nanoparticles synthesized from TinosporaCordifolia induce oxidative stress, mitochondrial damage and apoptosis in Colorectal Cancer. Nanotheranostics 8, 312–329. https://doi.org/10.7150/ntno.84995
Bhardwaj B, Singh P, Kumar A, Kumar S, Budhwar V. 2020. Eco-Friendly Greener Synthesis of Nanoparticles. Advanced pharmaceutical bulletin 10, 566–576. https://doi.org/10.34172/apb.2020.067
Birks JS, Grimley Evans J. 2015. Rivastigmine for Alzheimer’s disease. The Cochrane database of systematic reviews 4, CD001191. https://doi.org/10.1002/14651858.CD001191.pub3
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. 2023. Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel, Switzerland) 16, 1410. https://doi.org/10.3390/ph16101410
Chandarana M, Curtis A, Hoskins C. 2018. The use of nanotechnology in cardiovascular disease. Applied Nanoscience 8, 1607–1619. https://doi.org/10.1007/s13204-018-0856-z
Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. 2024. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences 193, 106688. https://doi.org/10.1016/j.ejps.2023.106688
Cheng X, Xie Q, Sun Y. 2023. Advances in nanomaterial-based targeted drug delivery systems. Frontiers in bioengineering and biotechnology 11, 1177151. https://doi.org/10.3389/fbioe.2023.1177151
Debele TA, Park Y. 2022. Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. Life (Basel, Switzerland) 12, 2078. https://doi.org/10.3390/life12122078
Devaraj A, Mahalingam G. 2024. Green synthesis of Au Nps using Hemidesmusindicus root extract (Hire) and investigating its potential biomedical efficacies. Chemical Papers 78, 2895–2914. https://doi.org/10.1007/s11696-023-03280-7
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. 2020. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. International journal of molecular sciences 21, 2217. https://doi.org/10.3390/ijms21062217
Di Bella MA. 2022. Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. Biology 11, 804.https://doi.org/10.3390/biology11060804
Dilliard SA, Siegwart DJ. 2023. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature reviews. Materials 8, 282–300. https://doi.org/10.1038/s41578-022-00529-7
Division of Cancer Treatment and Diagnosis at the National Cancer Institute, U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute, US. https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments
Dos Santos Tramontin N, da Silva S, Arruda R, Ugioni KS, Canteiro PB, de Bem Silveira G, Mendes C, Silveira PCL, Muller AP. 2020. Gold Nanoparticles Treatment Reverses Brain Damage in Alzheimer’s Disease Model. Molecular neurobiology 57, 926–936. https://doi.org/10.1007/s12035-019-01780-w
Ealia SAM, &Saravanakumar MP. 2017. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 32019.
El-Gharbawy RM, Emara AM, Abu-Risha SE. 2016 . Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomedicine & Pharmacotherapy 84, 810-820. https://doi.org/10.1016/j.biopha.2016.09.068
ElMosbah DE, Khattab MS, Ibrahim MA, El-Asssal MI, Miniawy HMFE. 2024. Preclinical efficacy of oral and nasal rivastigmine-loaded chitosan nano-particles on AlCl3-induced Alzheimer’s-like disease in rats. Inflammopharmacology 32, 3943–3952. https://doi.org/10.1007/s10787-024-01541-9
Elsayed KA, Alomari M, Drmosh QA, Alheshibri M, Al Baroot A, Kayed TS, Manda AA, Al-Alotaibi AL. 2022. Fabrication of ZnO-Ag bimetallic nanoparticles by laser ablation for anticancer activity. Alexandria Engineering Journal 61, 1449-1457.
Fan J, Cheng Y, Sun M. 2020. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. Chemical record (New York, N.Y.) 20, 1474–1504.https://doi.org/10.1002/tcr.202000087
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. 2019. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (London, England) 14, 93–126. https://doi.org/10.2217/nnm-2018-0120
Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C. 2020. The global burden of neurological disorders: translating evidence into policy. The Lancet. Neurology 19, 255–265. https://doi.org/10.1016/S1474-4422(19)30411-9
Forbes NA., and Zasadzinski JA. 2010. Localized photothermal heating of temperature sensitive liposomes. Biophysical Journal 1, 274a. https://doi.org/10.1016/j.ejps.2023.106688
Fouladi F, Steffen KJ, Mallik S. 2017. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjugate chemistry 28, 857–868. https://doi.org/10.1021/acs.bioconjchem.6b00736
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. 2021. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in pharmacology 12, 601626. https://doi.org/10.3389/fphar.2021.601626
Gavas S, Quazi S, Karpiński TM. 2021. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale research letters 16, 173. https://doi.org/10.1186/s11671-021-03628-6
Ghosh S, Carter KA, Lovell JF. 2019. Liposomal formulations of photosensitizers. Biomaterials 218, 119341. https://doi.org/10.1016/j.biomaterials.2019.119341
Gomaa S, Nassef M, Tabl G, Zaki S, Abdel-Ghany A. 2024. Doxorubicin and folic acid-loaded zinc oxide nanoparticles-based combined anti-tumor and anti-inflammatory approach for enhanced anti-cancer therapy. BMC cancer 24, 34. https://doi.org/10.1186/s12885-023-11714-4
Gu Z, Da Silva CG, Van der Maaden K, Ossendorp F, Cruz LJ. 2020. Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics 12, 1054. https://doi.org/10.3390/pharmaceutics12111054
Han S, Sun J, He S, Tang M, Chai R. 2019a. The application of graphene-based biomaterials in biomedicine. American journal of translational research 11, 3246–3260.
Han X , Xu K , Taratula O , Farsad K . 2019b. Applications of nanoparticles in biomedical imaging. Nanoscale 11, 799–819. https://doi.org/10.1039/c8nr07769j
Holden MS, Black J, Lewis A, Boutrin MC, Walemba E, Sabir TS, Boskovic DS, Wilson A, Fletcher HM, Perry CC. 2016. Antibacterial Activity of Partially Oxidized Ag/Au Nanoparticles against the Oral Pathogen Porphyromonasgingivalis W83. Journal of nanomaterials 9605906. https://doi.org/10.1155/2016/9605906
Hu Y, Hu X, Lu Y, Shi S, Yang D, Yao T. 2020. New Strategy for Reducing Tau Aggregation Cytologically by A Hairpinlike Molecular Inhibitor, Tannic Acid Encapsulated in Liposome. ACS chemical neuroscience 11, 3623–3634. https://doi.org/10.1021/acschemneuro.0c00508
Hwang H, Jeong HS, Oh PS, Kim M, Lee TK, Kwon J, Kim HS, Lim ST, Sohn MH, Jeong HJ. 2016. PEGylated nanoliposomes encapsulating angiogenic peptides improve perfusion defects: Radionuclide imaging-based study. Nuclear medicine and biology 43, 552–558. https://doi.org/10.1016/j.nucmedbio.2016.05.010
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. 2025. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. International journal of nanomedicine 20, 1213–1262. https://doi.org/10.2147/IJN.S488961
Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. 2020. Biomedical Applications of TiO2 Nanostructures: Recent Advances. International journal of nanomedicine 15, 3447–3470. https://doi.org/10.2147/IJN.S249441
Jamshidi M, Ziamajidi N, Khodadadi I, Dehghan A, Kalantarian G, Abbasalipourkabir R. 2018. The effect of insulin-loaded trimethylchitosan nanoparticles on rats with diabetes type I. Biomedicine & pharmacotherapy = Biomedecine&pharmacotherapie 97, 729–735. https://doi.org/10.1016/j.biopha.2017.10.097
Jiang J, Pi J, Cai J. 2018. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic chemistry and applications 1062562. https://doi.org/10.1155/2018/1062562
Jiang T, Gonzalez KM, Cordova LE, Lu J. 2023. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert opinion on drug delivery 20, 523–540. https://doi.org/10.1080/17425247.2023.2200246
Jing Y, Sohn H, Kline T, Victora RH, Wang JP. 2009. Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia. Journal of Applied Physics 105. https://doi.org/10.1063/1.3074136
Joudeh N, Linke D. 2022. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of nanobiotechnology 20, 262. https://doi.org/10.1186/s12951-022-01477-8
Katifelis H, Mukha I, Bouziotis P, Vityuk N, Tsoukalas C, Lazaris AC, Lyberopoulou A, Theodoropoulos GE, Efstathopoulos EP, Gazouli M. 2020. Ag/Au Bimetallic Nanoparticles Inhibit Tumor Growth and Prevent Metastasis in a Mouse Model. International journal of nanomedicine 15, 6019–6032. https://doi.org/10.2147/IJN.S251760
Kaur G, Arora J, Sodhi AS, Bhatia S, Batra N. 2024. Nanotechnology and CRISPR/Cas-Mediated Gene Therapy Strategies: Potential Role for Treating Genetic Disorders. Molecular biotechnology Advance online publication. https://doi.org/10.1007/s12033-024-01301-8
Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. 2024. Ceria-Based Therapeutic Antioxidants for Biomedical Applications. Advanced materials (Deerfield Beach, Fla.) 36, e2210819. https://doi.org/10.1002/adma.202210819
Kim YS, Ko MJ, Moon H, Sim W, Cho AS, Gil G, Kim HR. 2022. Ultrasound-Responsive Liposomes for Targeted Drug Delivery Combined with Focused Ultrasound. Pharmaceutics 14, 1314. https://doi.org/10.3390/pharmaceutics14071314
Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. 2014. Thermosensitive liposomal drug delivery systems: state of the art review. International journal of nanomedicine 9, 4387–4398. https://doi.org/10.2147/IJN.S49297
Kulkarni S, Chaudhari SB, Chikkamath SS, Kurale RS, Thopate TS, Praveenkumar S, Ghotekar S, Patil P, Kumar D. 2024. Potential applications of fullerenes in drug delivery and medical advances. Inorganic Chemistry Communications, 113829. https://doi.org/10.1016/j.inoche.2024.113829
Labouta HI, Gomez-Garcia MJ, Sarsons CD, Nguyen T, Kennard J, Ngo W, Terefe K, Iragorri N, Lai P, Rinker KD, Cramb DT. 2018. Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model. RSC advances 8, 7697–7708. https://doi.org/10.1039/c7ra13438j
Li C, Dou Y, Chen Y, Qi Y, Li L, Han S, Jin T, Guo J, Chen J, Zhang J. 2020. Site‐specific microRNA‐33 antagonism by pH‐responsive nanotherapies for treatment of atherosclerosis via regulating cholesterol efflux and adaptive immunity. Advanced functional materials 30, 2002131.
Li R, Liang H, Li J, Shao Z, Yang D, Bao J, Wang K, Xi W, Gao Z, Guo R, Mu X. 2024. Paclitaxel liposome (Lipusu) based chemotherapy combined with immunotherapy for advanced non-small cell lung cancer: a multicenter, retrospective real-world study. BMC cancer 24, 107. https://doi.org/10.1186/s12885-024-11860-3
Liu CJ, Yao L, Hu YM, Zhao BT. 2021. Effect of Quercetin-Loaded Mesoporous Silica Nanoparticles on Myocardial Ischemia-Reperfusion Injury in Rats and Its Mechanism. International journal of nanomedicine 16, 741–752. https://doi.org/10.2147/IJN.S277377
Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW. 2013. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34, 4404–4417. https://doi.org/10.1016/j.biomaterials.2013.02.048
Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ. 2014. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnology advances 32, 693–710. https://doi.org/10.1016/j.biotechadv.2013.11.009
Lombardo D, Kiselev M.A, Caccamo MT. 2019. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomater.12, 1–26
Lombello CB, Masson AO, Ambrosio FN, Ferraraz DC, do Nascimento MHM. 2023. Principles of Tissue Engineering and Regenerative Medicine. In: Lombello, C.B., da Ana, P.A. (eds) Current Trends in Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-38743-2_8
Lotfabad NN, Kouchesfehani HM, Sheikhha MH, Kalantar SM. 2018. Development of a novel cationic liposome: Evaluation of liposome mediated transfection and anti-proliferative effects of miR-101 in acute myeloid leukemia. Journal of Drug Delivery Science and Technology 45, 196-202. ttps://doi.org/10.1016/j.jddst.2018.02.005
Luo X, Zhang M, Dai W, Xiao X, Li X, Zhu Y, Shi X, Li Z. 2024. Targeted nanoparticles triggered by plaque microenvironment for atherosclerosis treatment through cascade effects of reactive oxygen species scavenging and anti-inflammation. Journal of nanobiotechnology 22, 440. https://doi.org/10.1186/s12951-024-02652-9
Lyon PC, Gray MD, Mannaris C, Folkes LK, Stratford M, Campo L, Chung DYF, Scott S, Anderson M, Goldin R, Carlisle R, Wu F, Middleton MR, Gleeson FV, Coussios CC. 2018. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial. The Lancet. Oncology 19, 1027–1039. https://doi.org/10.1016/S1470-2045(18)30332-2
Makadia HK, Siegel SJ. 2011. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 3, 1377–1397. https://doi.org/10.3390/polym3031377
Malik S, Muhammad K, Waheed Y. 2023. Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules (Basel, Switzerland) 28, 6624. https://doi.org/10.3390/molecules28186624
Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. 2017. Quantum dots in imaging, drug delivery and sensor applications. International journal of nanomedicine 12, 5421–5431.https://doi.org/10.2147/IJN.S138624
Metselaar J, Lammers T, Boquoi A, Fenk R, Testaquadra F, Schemionek M, Kiessling F, Isfort S, Wilop S, Crysandt M. 2023. A phase I first-in-man study to investigate the pharmacokinetics and safety of liposomal dexamethasone in patients with progressive multiple myeloma. Drug delivery and translational research 13, 915–923. https://doi.org/10.1007/s13346-022-01268-6
Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, Szebeni J, Ishida T. 2019. PEGylated liposomes: immunological responses. Science and technology of advanced materials 20, 710–724. https://doi.org/10.1080/14686996.2019.1627174
Mohamed Walied AA, Abd El-Gawad Hala, Mekkey, Saleh, Galal, Hoda, Handal, Hala, Mousa, Hanan, Labib Ammar. 2021. “Quantum dots synthetization and future prospect applications” Nanotechnology 10, 1926-1940. https://doi.org/10.1515/ntrev-2021-0118
Mollé LM, Smyth CH, Yuen D, Johnston APR. 2022. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 14, e1809. https://doi.org/10.1002/wnan.1809
Nagaraju PG, S A, Priyadarshini P. 2023. Tau-aggregation inhibition: promising role of nanoencapsulated dietary molecules in the management of Alzheimer’s disease. Critical reviews in food science and nutrition 63, 11153–11168. https://doi.org/10.1080/10408398.2022.2092446
Naseri-Nosar M, Salehi M, Hojjati-Emami S. 2017. Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. International journal of biological macromolecules 103, 701–708. https://doi.org/10.1016/j.ijbiomac.2017.05.054
Nguyen L, Van Mai B, Van Nguyen D, Nguyen N, Van Pham V, Pham T, Le H. 2023. Green synthesis of silver nanoparticles using Callisiafragrans leaf extract and its anticancer activity against MCF-7, HepG2, KB, LU-1, and MKN-7 cell lines. Green Processing and Synthesis 12, 20230024. https://doi.org/10.1515/gps-2023-0024
Nikolova MP, Chavali MS. 2020. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics (Basel, Switzerland) 5, 27. https://doi.org/10.3390/biomimetics5020027
Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. 2014. Ligand-targeted liposome design: challenges and fundamental considerations. Trends in biotechnology 32, 32–45. https://doi.org/10.1016/j.tibtech.2013.09.007
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. 2022. Liposomes: structure, composition, types, and clinical applications. Heliyon 8, e09394. https://doi.org/10.1016/j.heliyon.2022.e09394
Ouyang Y, Zhou M, Liu Y, Zhang L, Zhong C, Yang Q, Liu M. 2024. Mg-doped ZnO nanoparticle as an effective nanocarrier in delivery of 5-Fluorouracil anti-gastric cancer drug. Journal of Molecular Structure 1314, p.138706.
Pan X, Veroniaina H, Su N, Sha K, Jiang F, Wu Z, Qi X. 2021. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian journal of pharmaceutical sciences 16, 687–703. https://doi.org/10.1016/j.ajps.2021.05.003
Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. 2018. In-vivo sustained release of nanoencapsulatedferulic acid and its impact in induced diabetes. Materials science & engineering. C, Materials for biological applications 92, 381–392. https://doi.org/10.1016/j.msec.2018.06.055
Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. 2019. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials (Basel, Switzerland) 12, 1824. https://doi.org/10.3390/ma12111824
Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV. 2021. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. Materials (Basel, Switzerland) 14, 6707. https://doi.org/10.3390/ma14216707
Rathore P, Mahor A, Jain S, Haque A, Kesharwani P. 2020. Formulation development, in vitro and in vivo evaluation of chitosan engineered nanoparticles for ocular delivery of insulin. RSC advances 10, 43629–43639. https://doi.org/10.1039/d0ra07640f
Rehana D, Mahendiran D, Kumar RS, Rahiman AK. 2017. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess and biosystems engineering 40, 943–957. https://doi.org/10.1007/s00449-017-1758-2
Riley MK, Vermerris W. 2017. Recent Advances in Nanomaterials for Gene Delivery-A Review. Nanomaterials (Basel, Switzerland) 7, 94. https://doi.org/10.3390/nano7050094
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. 2022. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 12, 784. https://doi.org/10.3390/biom12060784
Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB, García ML. 2018. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. Journal of nanobiotechnology 16, 32.https://doi.org/10.1186/s12951-018-0356-z
Schroeder A, Kost J, Barenholz Y. 2009. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chemistry and physics of lipids 162, 1–16. https://doi.org/10.1016/j.chemphyslip.2009.08.003
Senapati S, Mahanta AK, Kumar S, Maiti P. 2018. Controlled drug delivery vehicles for cancer treatment and their performance. Signal transduction and targeted therapy 3, 7. https://doi.org/10.1038/s41392-017-0004-3
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. 2015. Advances and Challenges of Liposome Assisted Drug Delivery. Frontiers in pharmacology 6, 286. https://doi.org/10.3389/fphar.2015.00286
Shan Q, Zhi Y, Chen Y, Yao W, Zhou H, Che J, Bai F. 2024. Intranasal liposomes co-delivery of Aβ-targeted KLVFF and ROS-responsive ceria for synergistic therapy of Alzheimer’s disease. Chemical Engineering Journal p.153210
Sim S, Wong NK. 2021. Nanotechnology and its use in imaging and drug delivery (Review). Biomedical reports 14, 42.https://doi.org/10.3892/br.2021.1418
Singh AP, Biswas A, Shukla A, Maiti P. 2019. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal transduction and targeted therapy 4, 33. https://doi.org/10.1038/s41392-019-0068-3
Smith BR, Edelman ER. 2023. Nanomedicines for cardiovascular disease. Nature cardiovascular research 2, 351–367. https://doi.org/10.1038/s44161-023-00232-y
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. 2023. Emerging nanotechnology for Alzheimer’s disease: From detection to treatment. Journal of controlled release : official journal of the Controlled Release Society 360, 392–417. https://doi.org/10.1016/j.jconrel.2023.07.004
Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A. 2019. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules (Basel, Switzerland) 24, 4209. https://doi.org/10.3390/molecules24234209
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. 2021. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. Journal of personalized medicine 11, 571. https://doi.org/10.3390/jpm11060571
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. 2023. Smart nanoparticles for cancer therapy. Signal transduction and targeted therapy 8, 418. https://doi.org/10.1038/s41392-023-01642-x
Tejada-Berges T, Granai CO, Gordinier M, Gajewski W. 2002. Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert review of anticancer therapy 2, 143–150. https://doi.org/10.1586/14737140.2.2.143
Terna AD, Elemike EE, Mbonu JI, Osafile OE, Ezeani RO. 2021. The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering: B 272, p.115363. https://doi.org/10.1016/j.mseb.2021.115363
Tettey A, Jiang Y, Li X, Li Y. 2021. Therapy for Pulmonary Arterial Hypertension: Glance on Nitric Oxide Pathway. Frontiers in pharmacology 12, 767002. https://doi.org/10.3389/fphar.2021.767002
Thomas SC, Harshita, Mishra PK, Talegaonkar S. 2015. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Current pharmaceutical design 21, 6165–6188. https://doi.org/10.2174/1381612821666151027153246
Ullah A, Mostafa NM, Halim SA, Elhawary EA, Ali A, Bhatti R, Shareef U, Al Naeem W, Khalid A, Kashtoh H, Khan A, Al-Harrasi A. 2024. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytotherapy research: 38, 4467–4501. https://doi.org/10.1002/ptr.8292
Wahajuddin, Arora S. 2012. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International journal of nanomedicine 7, 3445–3471. https://doi.org/10.2147/IJN.S30320
Wang H, Sui H, Zheng Y, Jiang Y, Shi Y, Liang J, Zhao L. 2019. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale 11, 7481–7496. https://doi.org/10.1039/c9nr01255a
Wang J, Li B, Qiu L, Qiao X, Yang H. 2022. Dendrimer-based drug delivery systems: history, challenges, and latest developments. Journal of biological engineering 16, 18. https://doi.org/10.1186/s13036-022-00298-5
Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, Macarulla T, Lee KH, Cunningham D, Blanc JF, Hubner RA, Chiu CF, Schwartsmann G, Siveke JT, Braiteh F, Moyo V, Belanger B, Dhindsa N, Bayever E, Von Hoff DD, Chen LT; NAPOLI-1 Study Group. 2016. Nanoliposomalirinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet (London, England) 387, 545–557. https://doi.org/10.1016/S0140-6736(15)00986-1
Waris A, Ali A, Khan AU, Asim M, Zamel D, Fatima K, Raziq A, Khan MA, Akbar N, Baset A, Abourehab MAS. 2022. Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. Nanomaterials (Basel, Switzerland) 12, 2140. https://doi.org/10.3390/nano12132140
WHO updates Cardiovascular Risk Charts. 2019. Link: https://www.who.int/news/item/02-09-2019-who-updates-cardiovascular-risk-charts
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. 2015. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of controlled release : official journal of the Controlled Release Society 200, 138–157. https://doi.org/10.1016/j.jconrel.2014.12.030
Wilson B, Geetha KM. 2022. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. Journal of drug delivery science and technology 74, 103553. https://doi.org/10.1016/j.jddst.2022.103553
Xi Y, Ge J, Guo Y, Lei B, Ma PX. 2018. Biomimetic Elastomeric Polypeptide-Based Nanofibrous Matrix for Overcoming Multidrug-Resistant Bacteria and Enhancing Full-Thickness Wound Healing/Skin Regeneration. ACS nano 12, 10772–10784. https://doi.org/10.1021/acsnano.8b01152
Yadav D, Amini F, Ehrmann A. 2020. Recent advances in carbon nanofibers and their applications–a review. European Polymer Journal 5, 109963. https://doi.org/10.1016/j.eurpolymj.2020.109963
Yadav N. 2022. Cerium oxide nanostructures: properties, biomedical applications and surface coatings. 3 Biotech 12, 121. https://doi.org/10.1007/s13205-022-03186-3
Yang H, Li X, Zhou H, Zhuang Y, Hu H, Wu H, Yang S. 2011. Monodisperse water-soluble Fe–Ni nanoparticles for magnetic resonance imaging. Journal of alloys and compounds 509, 1217-1221. https://doi.org/10.1016/j.jallcom.2010.09.191
Yang J. 2019. Patisiran for the treatment of hereditary transthyretin-mediated amyloidosis. Expert review of clinical pharmacology 12, 95–99. https://doi.org/10.1080/17512433.2019.1567326
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. 2020. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules (Basel, Switzerland) 25, 2193. https://doi.org/10.3390/molecules25092193
Yuan YG, Peng QL, Gurunathan S. 2017. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. International journal of nanomedicine 12, 6487–6502. https://doi.org/10.2147/IJN.S135482
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. 2023. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 15, 1596. https://doi.org/10.3390/polym15071596
Zamanlu M, Eskandani M, Barar J, Jaymand M, Pakchin PS, Farhoudi M. 2019. Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. Journal of Drug Delivery Science and Technology 53, 101165.
Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. 2021. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International journal of nanomedicine 16, 1681–1706. https://doi.org/10.2147/IJN.S299448
Zhang J, Hu J, Chan HF, Skibba M, Liang G, Chen M. 2016. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Nanomedicine : nanotechnology, biology, and medicine 12, 1303–1311. https://doi.org/10.1016/j.nano.2016.01.017
Zhang N, Li C, Zhou D, Ding C, Jin Y, Tian Q, Meng X, Pu K, Zhu Y. 2018. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Actabiomaterialia 70, 227–236. https://doi.org/10.1016/j.actbio.2018.01.038
Zhao Y, Cai J, Liu Z, Li Y, Zheng C, Zheng Y, Chen Q, Chen H, Ma F, An Y, Xiao L, Jiang C, Shi L, Kang C, Liu Y. 2019. Nanocomposites Inhibit the Formation, Mitigate the Neurotoxicity, and Facilitate the Removal of β-Amyloid Aggregates in Alzheimer’s Disease Mice. Nano letters 19, 674–683.https://doi.org/10.1021/acs.nanolett.8b03644
Zhong Y, Meng F, Deng C, Mao X, Zhong Z. 2017. Targeted inhibition of human hematological cancers in vivo by doxorubicin encapsulated in smart lipoic acid-crosslinked hyaluronic acid nanoparticles. Drug delivery 24, 1482–1490. https://doi.org/10.1080/10717544.2017.1384864
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. 2020. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules (Basel, Switzerland) 25, 3731. https://doi.org/10.3390/molecules25163731
S. M. Sakthisankaran, M. Swamivelmanickam, K. Baskaran, S. M. Sivasankaran, K. Harish (2025), Nanotechnology in medicine: A comprehensive review of emerging trends, innovations and therapeutic applications; IJB, V26, N5, May, P174-201
https://innspub.net/nanotechnology-in-medicine-a-comprehensive-review-of-emerging-trends-innovations-and-therapeutic-applications/
Copyright © 2025
By Authors and International
Network for Natural Sciences
(INNSPUB) https://innspub.net
This article is published under the terms of the
Creative Commons Attribution License 4.0